Problems

Ted Eisenberg, Section Editor

This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously stated problems can be seen at http://www.ssma.org/publications>.

Solutions to the problems stated in this issue should be posted before May 15, 2015

• 5343: Proposed by Kenneth Korbin, New York, NY

Four different Pythagorean Triangles each have hypotenuse equal to $4p^4 + 1$ where p is prime.

Express the sides of these triangles in terms of p.

- 5344: Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan
 Let △ABC be isosceles with AB = AC. Let D be a point on side BC. A line through point D intersects rays AB and AC at points E and F respectively. Prove that ED · DF ≥ BD · DC.
- 5345: Proposed by Arkady Alt, San Jose, CA

Let a, b > 0. Prove that for any x, y the following inequality holds

$$|a\cos x + b\cos y| \le \sqrt{a^2 + b^2 + 2ab\cos(x+y)},$$

and find when equality occurs.

• 5346: Proposed by D.M. Bătinetu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania

Show that in any triangle ABC, with the usual notations, the following hold,

$$\frac{h_b + h_c}{h_a} r_a^2 + \frac{h_c + h_a}{h_b} r_b^2 + \frac{h_a + h_b}{h_c} r_c^2 \ge 2s^2,$$

where r_a is the excircle tangent to side a of the triangle and s is the triangle's semiperimeter.

• 5347: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Let 0 < a < b be real numbers and let $f, g : [a, b] \to R_+^*$ be continuous functions. Prove