W49. The sequence $(x_n)_{n\geq 0}$ is defined by $x_0=1$ and

$$x_{n+1} = \frac{\sqrt{3}x_n - 1}{x_n + \sqrt{3}}, n = 0, 1, 2, \dots$$

Find x_{2021} .

Ovidiu Bagdasar.

Solution by Arkady Alt, San Jose, California, USA.

Let $(\varphi_n)_{n\geq 0}$ be sequence defined by $\varphi_0 = \frac{\pi}{4}$ and $\varphi_{n+1} = \varphi_n + \frac{\pi}{6}, n \in \mathbb{N} \cup \{0\}$ that is $\varphi_n = \frac{\pi}{4} + \frac{n\pi}{6}, n \in \mathbb{N} \cup \{0\}$.

Since $x_0 = \cot \varphi_0$ and for any $n \in \mathbb{N} \cup \{0\}$ assuming $x_n = \cot \varphi_n$ we obtain

$$x_{n+1} = \frac{\sqrt{3} x_n - 1}{x_n + \sqrt{3}} = x_{n+1} = \frac{\sqrt{3} \cot \varphi_n - 1}{\cot \varphi_n + \sqrt{3}} = \cot \left(\varphi_n + \frac{\pi}{6}\right) = \cot \varphi_{n+1} \text{ then by Math}$$

Induction $x_n = \cot \varphi_n = \cot \left(\frac{\pi}{4} + \frac{n\pi}{6}\right), n \in \mathbb{N} \cup \{0\}.$

In particular,
$$x_{2021} = \cot\left(\frac{\pi}{4} + \frac{2021\pi}{6}\right) = \cot\left(\frac{\pi}{4} + \frac{5\pi}{6}\right) = \frac{1 \cdot \cot\frac{5\pi}{6} - 1}{\cot\frac{5\pi}{6} + 1} =$$

$$\frac{1\cdot\left(-\sqrt{3}\right)-1}{\left(-\sqrt{3}\right)+1}=2+\sqrt{3}.$$