W36. Let $\triangle(x,y,z) = 2(xy+yz+zx) - (x^2+y^2+z^2)$ and let a,b,c be sidelengths of a triangle with area F. Prove that $\triangle(a^3,b^3,c^3) \leq \frac{64F^3}{\sqrt{3}}$.

Arkady Alt

W37. Let E be a inner Product Space with dot product $-\cdot -$ and F be proper nonzero subspace. Let $P: E \to E$ be orthogonal projection E on F.

- a). Prove that for any $x, y \in E$, holds inequality $|x \cdot y xP(y) yP(x)| \le ||x|| \cdot ||y||$
- b). Determine all cases when equality occours

Arkady Alt

W38. Prove that $0 < \left(\frac{4^x + 2^x + 1}{x}\right)^x - 2^x < 1$ for all $x \in \left(0, \frac{1}{2e}\right]$.

Ionel Tudor

W39. Let $n \ge 2$ be a natural number and $a_i > 0$, $i = \overline{1, n}$. If $S = \sum_{i=1}^n a_i$ and $x_i = S - a_i$, then the following inequality holds:

$$\frac{\prod_{i=1}^{n} \sqrt{a_i}}{\sqrt{\prod_{1 \le i < j \le n} (a_i + a_j)}} \le \frac{\prod_{i=1}^{n} \sqrt{x_i}}{\sqrt{\prod_{1 \le i < j \le n} (x_i + x_j)}}.$$

Ovidiu Bagdasar

W40. Prove that if $x_i > 0$, $i = \overline{1, n}$, then the next inequality holds:

(1)
$$\sum_{i=1}^{n} \frac{S_{\alpha+\beta} - x_i^{\alpha+\beta}}{S_{\alpha} - x_i^{\alpha}} \le n \cdot \frac{S_{\alpha+\beta}}{S_{\alpha}},$$

provided that $\alpha\beta \geq 0$ and $S_p = \sum_{i=1}^n x_i^p$, for any real number p.

Ovidiu Bagdasar

W41. Let $n \geq 2$ a natural number and the numbers $a_i > 1$, $i = \overline{1, n}$. Prove that

$$\sum_{i=1}^{n} \frac{\log_{a_i} a_{i+1}^{n-1}}{S - a_i} \ge \frac{n^2}{\sum_{i=1}^{n} a_i}.$$

We consider that $a_{n+1} = a_1$, and $S = \sum_{i=1}^{n} a_i$.

Ovidiu Bagdasar

W42. Let ABC be an acute triangle. The angle bisectors from A, B, C meet the opposite sides in A_1 , B_1 , C_1 , respectively. Let R and r be the circumradius and the inradius of the triangle ABC, respectively. Let R_A , R_B , and R_C the circumradii of the triangles AC_1B_1 , BA_1C_1 , and CB_1A_1 , respectively. Prove that

$$R_A + R_B + R_C \ge R + r$$
.

Pál Péter Dályay

W43. Let f be a continuous real function defined on the set of the nonnegative real numbers for which the following integrals are convergent: $S = \int_0^\infty f^2(x) dx$, $T = \int_0^\infty x f^2(x) dx$, $U = \int_0^\infty x^2 f^2(x) dx$. Prove that