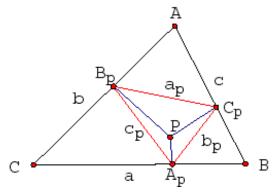
Problem with a solution proposed by Arkady Alt , San Jose , California, USA. One inequality with vanished variables in a triangle.

Let a, b, c be side lengths of a triangle *ABC* and x, y, z be non-negative real numbers such that x + y + z = 1 and let *R* be circumradius of this triangle. Prove that

 $a^2yz + b^2zx + c^2xy \le R^2$

Solution.



Let *P* be point in $\triangle ABC$ with barycentric coordinates $(p_a, p_b, p_c) = (x, y, z)$. Let $R_a := PA, R_b = PB, R_c := PC$ and A_p, B_p, C_p be foots of perpendiculars from *P* to sides *BC*, *CA*, *AB* respectively. Also we denote via $d_a := PA_p$, $d_b := PB_p, d_c := PC_p$ and $a_p := B_pC_p, b_p := C_pA_p, c_p := A_pB_p$ (side lengths of pedal triangle $A_pB_pC_p$). Let F := [ABC] and $F_a := [PBC], F_b := [PCA], F_c := [PAB]$. Then $F_a = \frac{ad_a}{2}, F_b = \frac{bd_b}{2}, F_c = \frac{cd_c}{2}$ and $p_a = \frac{F_a}{F} = \frac{ad_a}{2F}, p_b = \frac{F_b}{F} = \frac{bd_b}{2F}$, $p_c = \frac{F_c}{F} = \frac{cd_c}{2F}$. Since $\angle B_pPC_p = 180^\circ - A$ then, by Cos-Theorem, $a_p^2 = d_b^2 + d_c^2 + 2d_bd_c \cos A$ and $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$. Using $d_b = \frac{2p_bF}{b}, d_c = \frac{2p_cF}{c}$ and $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ we obtain: $a_p^2 = \frac{4p_b^2F^2}{b^2} + \frac{4p_c^2F^2}{c^2} + \frac{4p_bp_cF^2}{bc} \cdot \frac{b^2 + c^2 - a^2}{bc} = \frac{4F^2}{bc}(p_b^2 c^2 + p_c^2 b^2 + p_bp_c(b^2 + c^2 - a^2)) = \frac{4F^2}{b^2c^2}(p_bc^2 + p_cb^2 - p_bca^2 - p_cp_ab^2 - p_ap_bc^2)$. Since abc = 4FRthen $\frac{4F^2}{b^2c^2} = \frac{4a^2F^2}{a^2b^2c^2} = \frac{a^2F^2}{4R^2}$ and, therefore, (1) $a_p^2 = \frac{d^2F^2}{4R^2}(p_bc^2 + p_cb^2 - p_bp_ca^2 - p_cp_ab^2 - p_cp_ab^2 - p_ap_bc^2)$.

Also, since quadrilateral AB_pPC_p cyclic with diameter R_a , by Sine Theorem we obtain $a_p = R_a \sin A = R_a \cdot \frac{a}{2R} = \frac{aR_a}{2R}$. By substitution $a_p = \frac{aR_a}{2R}$ in (1) we obtain barycentric representation for R_a^2 :

(2)
$$\begin{bmatrix} R_a^2 = p_b c^2 + p_c b^2 - p_b p_c a^2 - p_c p_a b^2 - p_a p_b c^2 \end{bmatrix}.$$

Since $p_a = \frac{ad_a}{2F}$, $p_b = \frac{bd_b}{2F}$, $p_c = \frac{cd_c}{2F}$ then $p_b c^2 + p_c b^2 = \frac{bc^2 d_b}{2F} + \frac{b^2 cd_c}{2F} = \frac{bc}{2F}(cd_b + bcd_c)$ and applying inequality $aR_a \ge cd_b + bd_c$ we obtain
 $p_b c^2 + p_c b^2 \le \frac{abcR_a}{2F} = 2RR_a$.
Since $p_b = \frac{bd_b}{2F}$ and $p_c = \frac{cd_c}{2F}$ then $p_b p_c a^2 = \frac{a^2 b^2 c^2}{4F^2} \cdot \frac{d_b d_c}{bc} = 4R^2 \cdot \frac{d_b d_c}{bc}$.
Thus, $R_a^2 = p_b c^2 + p_c b^2 - p_b p_c a^2 - p_c p_a b^2 - p_a p_b c^2 \le 2RR_a - 4R^2 \sum_{cyclic} \frac{d_b d_c}{bc} \iff (R - R_a)^2 \le R^2 - 4R^2 \sum_{cyc} \frac{d_b d_c}{bc} \implies \sum_{cyc} \frac{d_b d_c}{bc} \le \frac{1}{4}$ and, therefore,
 $a^2 yz + b^2 zx + c^2 xy = \sum_{cyc} p_b p_c a^2 = \sum_{cyc} \frac{bd_b}{2F} \cdot \frac{cd_c}{2F} a^2 = \sum_{cyc} \frac{a^2 bc d_b d_c}{4F^2} = \frac{a^2 b^2 c^2}{4F^2} \sum_{cyc} \frac{d_b d_c}{bc} = 4R^2 \sum_{cyc} \frac{d_b d_c}{bc} \le 4R^2 \cdot \frac{1}{4} = R^2$.