Problem with a solution proposed by Arkady Alt , San Jose , California, USA
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Further we will prove, using Math. Induction. that for any n € N holds inequality
n +2° -2
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1. Base of Math. Induction.

For n = 1we have b, = 1 and % =1.
2. Step of Math. Induction.

For any n > 1 from supposition b > k22+p2—_p1_2, k < n follow:
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1. Ifn=2kthen b, = by = k¥ + by > k? + T 1 = T

2. Ifn=2k+1then by = (k+ 1)? + by > (k+1)" + ’<"2J;,2—_”1—2:
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Remains to prove that 27(k+ 1)’ — (k+ 1)’ + k? > (2k+ 1).
We have 27(k+ 1)? —(k+ 1)P +k? > 2k+ 1)) <
20k + 1) +k? > 2k+ 1) +(k+ 1) < Qk+2)P+k? > 2k+ 1) +(k+ 1) <




2k +2)? = (2k+ 1)? > (k+ 1)? — k7, where latter inequality is right because function
h(x) = (x+1)? —=x? = (x+ 1) + (x+ 1)"2x +...+(x + 1)x”2 + x* 'obviously is
increasing in (0,).

We can see that equality in inequality b, > ”2;2 occurs only if n is power of 2,

because
otherwise, in chain of inequalities at least one time appears rigorous inequality.
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