Problem W16.

(J.Wildt IMC, OCTOGON Mathematical Magazine vol.25,n.1,2017, p.242). Problem with a solution proposed by Arkady Alt, San Jose, California, USA Find number of elements in image of function

$$k \mapsto \left[\frac{k^2}{n}\right] \colon \{1, 2, \dots, n\} \to \mathbb{N} \cup \{0\}.$$

Solution.

Let $I_n := \{1, 2, ..., n\}$ and $f(k) := \left[\frac{k^2}{n}\right]$, for any $k \in I_n$. We have to dtermine $|f(I_n)|$. Consider two cases.

Case1. *n* is even, that is n = 2m.

Lemma.

For any $k \in I_m$ holds inequality $f(k+1) - f(k) \leq 1$. **Proof**.

First we consider $k \in I_{m-1}$. Let $1 \le k \le m - 1$ then $f(k+1) = \left[\frac{k^2 + 2k + 1}{2m}\right]$ and $1 + f(k) = \left[\frac{k^2 + 2m}{2m}\right]$ Note that $k \le m - 1$ yields

$$f(k+1) \le \left[\frac{k^2 + 2(m-1) + 1}{2m}\right] = \left[\frac{k^2 + 2m - 1}{2m}\right] \le \left[\frac{k^2 + 2m}{2m}\right] = 1 + f(k).$$

Also for
$$k = m$$
 we have $f(m+1) = \left[\frac{m^2 + 2m + 1}{2m}\right] = \left[\frac{\frac{m^2 + 2m + 1}{2}}{m}\right] = \left[\frac{m^2 + 2m + 1}{2m}\right] = \left[\frac{m^2 + 2m + 1}{2m}\right]$

$$\left[\frac{\left\lfloor\frac{m^2+2m+1}{m}\right\rfloor}{2}\right] = \left[\frac{m+2+\left\lfloor\frac{1}{m}\right\rfloor}{2}\right] = 1+\left\lfloor\frac{m}{2}\right] = 1+f(m).\blacksquare$$

Corollary.

$$f(I_m) = \left\{ 0, 1, 2, \dots, \left\lfloor \frac{m}{2} \right\rfloor \right\}.$$
Proof.

Note that f(k) isn't decreasing, that is $f(k+1) - f(k) = \left[\frac{(k+1)^2}{n}\right] - \left[\frac{k^2}{n}\right] \ge 0$. Also, $f(m) = \left[\frac{m^2}{2m}\right] = \left[\frac{m}{2}\right]$ and $f(1) = \left[\frac{1}{2m}\right] = 0$. Suppose that there is $i \in I_{m/2}$ for which $f^{-1}(i) = \emptyset$. Obvious that $1 \le i < \left[\frac{m}{2}\right]$. Let $k_* := \left\{k \mid k \in I_m \text{ and } f(k) < i\right\}$. Then $f(k_*) < i < f(k_* + 1) \Longrightarrow f(k_* + 1) - f(k_*) > 1$, that is contradiction to Lemma.

Now note that
$$f(k)$$
 is strictly increasing in $k \in \{m + 1, m + 2, ..., 2m\}$.
Indeed, since for any $k \in I_m$ we have $f(m + k) = \left[\frac{(m + k)^2}{2m}\right] = \left[\frac{m^2 + 2mk + k^2}{2m}\right] = k + \left[\frac{m^2 + k^2}{2m}\right]$ then $f(m + (k + 1)) = k + 1 + \left[\frac{m^2 + (k + 1)^2}{2m}\right] > k + \left[\frac{m^2 + k^2}{2m}\right] = f(m + k)$ for any $k \in I_{m-1}$.
Hence, $|f(I_{2m} \setminus I_m)| = m$ and since $|f(I_m)| = \left[\frac{m}{2}\right] + 1$ then

 $|f(I_{2m})| = m + \left\lceil \frac{m}{2} \right\rceil + 1 = \left\lceil \frac{3m+2}{2} \right\rceil$ **Case 2**. *n* is odd, that is n = 2m + 1. Then as above we will prove divide this case on two parts. First we consider f on I_{m+1} . For any $k \in I_m$ we have $f(k+1) = \left[\frac{k^2 + 2k + 1}{2m + 1}\right] \le \left[\frac{k^2 + 2m + 1}{2m + 1}\right] = 1 + \left[\frac{k^2}{2m + 1}\right] = 1 + f(k+1)$ and $f(m+1) = \left[\frac{m^2 + 2m + 1}{2m + 1}\right] = 1 + \left[\frac{m^2}{2m + 1}\right], f(1) = \left[\frac{1}{2m + 1}\right] = 0.$ By the same way as above, using inequality $f(k+1) \le f(k) + 1$, can be proved that for any $0 < i < 1 + \left\lceil \frac{m^2}{2m+1} \right\rceil$ there is preimage in I_{m+1} . So, $|f(I_{m+1})| = 1 + \left\lceil \frac{m^2}{2m+1} \right\rceil$. Remains consider behavior of f on $I_{2m+1} \setminus I_{m+1} = \{m+1+k \mid k \in I_m\}$. For any $k \in I_m$ we have $f(m+1+k) = \left[\frac{(m+1)^2 + 2(m+1)k + k^2}{2m+1}\right] =$ $k + \left[\frac{k^2 + k + (m+1)^2}{2m+1}\right]$ and then $f(m+1+(k+1)) \ge k+1 + \left\lceil \frac{(k+1)^2 + (k+1) + (m+1)^2}{2m+1} \right\rceil > k + \left\lceil \frac{k^2 + k + (m+1)^2}{2m+1} \right\rceil = k + \left\lceil \frac{k^2 + k + (m+1)^2}{2m+1} \right\rceil$ f(m + 1 + k). Since f(k) is strictly increasing in $k \in I_{2m+1} \setminus I_{m+1}$ the $|f(I_{2m+1} \setminus I_{m+1})| = m$. Thus, $|f(I_{2m+1})| = m + 1 + \left\lceil \frac{m^2}{2m+1} \right\rceil = 1 + \left\lceil \frac{3m^2 + m}{2m+1} \right\rceil$. So, $|f(I_n)| = \begin{cases} 1 + \left\lfloor \frac{3m}{2} \right\rfloor$ if n = 2m $1 + \left\lfloor \frac{3m^2 + 3m + 1}{2m + 1} \right\rfloor$ if n = 2m + 1For n = 2m we have $|f(I_n)| = 1 + \left\lfloor \frac{3m}{2} \right\rfloor = 1 + \left\lfloor \frac{6m}{4} \right\rfloor = 1 + \left\lfloor \frac{3n}{4} \right\rfloor$ For n = 2m + 1 we have $|f(I_n)| = 1 + \left[\frac{3m^2 + 3m + 1}{2m + 1}\right] = 1 + \left[\frac{12m^2 + 12m + 4}{2m + 1}\right] = 1$ $1 + \left| \begin{array}{c} \frac{3(2m+1)^2 + 1}{2m+1} \\ \frac{2m+1}{4} \end{array} \right| = 1 + \left[\begin{array}{c} \frac{\left[3(2m+1) + \frac{1}{2m+1} \right]}{4} \end{array} \right] =$ $1 + \left\lceil \frac{3(2m+1)}{4} \right\rceil = 1 + \left\lceil \frac{3n}{4} \right\rceil.$ So, $|f(I_n)| = 1 + \left\lceil \frac{3n}{4} \right\rceil$.