
Problem W16.

(J.Wildt IMC, OCTOGON Mathematical Magazine vol.25,n.1,2017, p.242).

Problem with a solution proposed by Arkady Alt, San Jose, California, USA

Find number of elements in image of function

k  k2
n : 1,2, . . . ,n    0.

Solution.

Let In : 1,2, . . . ,n and fk : k2
n , for any k  In. We have to dtermine |fIn|.

Consider two cases.

Case1. n is even, that is n  2m.

Lemma.

For any k  Im holds inequality fk  1  fk  1.
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Corollary.
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Proof.
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Suppose that there is i  Im/2 for which f1i  . Obvious that 1  i  m
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Let k : k  k  Im and fk  i .

Then fk  i  fk  1  fk  1  fk  1, that is contradiction to Lemma.

Now note that fk is strictly increasing in k  m  1,m  2, . . , 2m.
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Case 2. n is odd, that is n  2m  1.

Then as above we will prove divide this case on two parts.

First we consider f on Im1.

For any k  Im we have
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By the same way as above, using inequality fk  1  fk  1, can be proved that
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Remains consider behavior of f on I2m1Im1  m  1  k  k  Im .
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