Problem with a solution proposed by Arkady Alt, San Jose, California, USA.

Let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ be positive real numbers such that

$$b_1 < a_1 < b_2 < a_2 < \ldots < a_{n-1} < b_n < a_n$$
. Let $F(x) := \frac{(x-b_1)(x-b_2)\ldots(x-b_n)}{(x-a_1)(x-a_2)\ldots(x-a_n)}$.

Prove that F'(x) < 0 for any $x \in Dom(F)$

Solution.

Lemma.

F(x) can be represented in form

$$F(x) = 1 + \sum_{k=1}^{n} \frac{c_k}{x - a_k},$$

where $c_k, k = 1, 2, ..., n$ are some positive real numbers.

Proof.

Let
$$F_k(x) := \frac{(x-b_1)(x-b_2)...(x-b_k)}{(x-a_1)(x-a_3)...(x-a_k)}, k \le n.$$

We will prove by Math. Induction that for any $k \le n$ there are positive numbers

$$c_k(i), i = 1, ..., k$$
 such that $F_k(x) = 1 + \sum_{i=1}^k \frac{c_k(i)}{x - a_i}$.

Let
$$d_k := a_k - b_k > 0, k = 1, 2, ..., n$$

Note that
$$F_1(x) = \frac{x - b_1}{x - a_1} = \frac{x - a_1 + a_1 - b_1}{x - a_1} = 1 + \frac{d_1}{x - a_1}$$
.

Since
$$\frac{x - b_{k+1}}{x - a_{k+1}} = 1 + \frac{d_{k+1}}{x - a_{k+1}}$$
 then in supposition $F_k(x) = 1 + \sum_{i=1}^k \frac{c_k(i)}{x - a_i}$,

where $c_k(i) > 0, i = 1, ..., k < n$ we obtain

$$F_{k+1}(x) = F_k(x) \cdot \frac{x - b_{k+1}}{x - a_{k+1}} = \left(1 + \sum_{i=1}^k \frac{c_k(i)}{x - a_i}\right) \left(1 + \frac{d_{k+1}}{x - a_{k+1}}\right) = 1 + \frac{d_{k+1}}{x - a_{k+1}} + \frac{d_{k+1}}{x - a_{k+1}}$$

$$\sum_{i=1}^{k} \frac{c_k(i)}{x - a_i} + \sum_{i=1}^{k} \frac{d_{k+1}c_k(i)}{(x - a_i)(x - a_{k+1})} = 1 + \frac{d_{k+1}}{x - a_{k+1}} + \sum_{i=1}^{k} \frac{c_k(i)}{x - a_i} - \frac{c_k(i)}{x - a_i} = 1 + \frac{d_{k+1}}{x - a_{k+1}} + \frac{c_k(i)}{x - a_i} - \frac{c_k(i)}{x - a_i} = 1 + \frac{d_{k+1}}{x - a_{k+1}} + \frac{c_k(i)}{x - a_i} - \frac{c_k(i)}{x - a_i} = 1 + \frac{d_{k+1}}{x - a_{k+1}} + \frac{c_k(i)}{x - a_i} - \frac{c_k(i)}{x - a_i} = 1 + \frac{d_{k+1}}{x - a_{k+1}} + \frac{c_k(i)}{x - a_i} - \frac{c_k(i)}{x - a_i} - \frac{c_k(i)}{x - a_i} = 1 + \frac{c_k(i)}{x - a_i} + \frac{c_k(i)}{x - a_i} - \frac{c_k$$

$$\sum_{i=1}^{k} \frac{d_{k+1}c_k(i)}{a_{k+1} - a_i} \left(\frac{1}{x - a_i} - \frac{1}{x - a_{k+1}} \right) = 1 + \frac{d_{k+1}}{x - a_{k+1}} \left(1 + \sum_{i=1}^{k} \frac{c_k(i)}{a_{k+1} - a_i} \right) +$$

$$\sum_{i=1}^k \frac{c_k(i)}{x - a_i} \left(1 - \frac{d_{k+1}}{a_{k+1} - a_i} \right) = 1 + \frac{d_{k+1} F_k(a_{k+1})}{x - a_{k+1}} + \sum_{i=1}^k \frac{c_k(i)}{x - a_i} \cdot \frac{b_{k+1} - a_i}{a_{k+1} - a_i}.$$

Since
$$F_k(a_{k+1}) > 0$$
 and $b_{k+1} - a_i = (b_{k+1} - a_k) + (a_k - a_i) > 0$ then

Since
$$F_k(a_{k+1}) > 0$$
 and $b_{k+1} - a_i = (b_{k+1} - a_k) + (a_k - a_i) > 0$ then $c_{k+1}(k+1) = d_{k+1}F_k(a_{k+1}) > 0$, $c_{k+1}(i) := \frac{(b_{k+1} - a_i)c_k(i)}{a_{k+1} - a_i} > 0$, $i = 1, 2, ..., k$

and
$$F_{k+1}(x) = 1 + \sum_{i=1}^{k+1} \frac{c_{k+1}(i)}{x - a_i}$$
.

Since
$$F(x) = 1 + \sum_{k=1}^{n} \frac{c_k}{x - a_k}$$
 and $c_k > 0, k = 1, 2, ..., n$ then $F'(x) = -\sum_{k=1}^{n} \frac{c_k}{(x - a_k)^2} < 0$

for any $x \in Dom(F) = \mathbb{R} \setminus \{a_1, a_2, \dots, a_n\}$