W17. Let $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n$ be positive real numbers such that $a_1 < a_2 < ... < a_n$ and $a_i \in (b_i, b_{i+1}), i = 1, 2, ..., n - 1$. Let

$$F(x) := \frac{(x - b_1)(x - b_2) \dots (x - b_n)}{(x - a_1)(x - a_3) \dots (x - a_n)}.$$

Prove that derivative of function F(x) is negative everywhere where function is defined. (Or, prove that F'(x) < 0 for any $x \in Dom(F)$).

Arkady Alt, San Jose, California, USA

W18. Let F be area of an acute triangle $\triangle ABC$ with bigger angle in C and let AA_1, BB_1 , be altitudes from vertices A and B, respectively. Find among such triangles the triangle with greatest value of area of ortho-quadrilateral A_1CB_1H .

Arkady Alt

W19. Let $T_n(x)$ be polynomial defined by recurrence $T_{n+1} - 2xT_n - T_{n-1}$, $n \in \mathbb{N}$ with initial conditions $T_0 = 1$, $T_1 = x$. (First Kind Chebishev's Polynomials). Prove that

$$\sqrt[n]{T_n(x)} \le 1 + n(x-1), x \ge 1, n \in N$$

Arkady Alt

W20. Let p is positive integer such that $p \geq 2$ and let

$$b_n := \sum_{k=0}^{\lceil \log_2 n \rceil} \left[\frac{2^k + n}{2^{k+1}} \right]^p.$$

Find

$$\min_{n \in N} \frac{b_n}{n^p + 2^p - 2}$$

Arkady Alt