U332. Find $\inf_{(x,y)\in D}(x+1)(y+1)$, where $D = \{(x,y)|x,y\in\mathbb{R}^+, x\neq y, x^y=y^x\}$.

Proposed by Arkady Alt, San Jose, USA

Solution by Daniel Lasaosa, Pamplona, Spain

Note that $e^{y \ln x} = x^y = y^x = e^{x \ln y}$ iff $\frac{\ln x}{x} = \frac{\ln y}{y}$, since e^x is a strictly increasing function for all real x. Note also that

$$\frac{d}{dx}\left(\frac{\ln(x)}{x}\right) = \frac{1 - \ln(x)}{x^2}$$

is negative iff x > e, positive iff x < e, and zero iff x = e, ie for any $x \neq y$ such that $x^y = y^x$, we must have either x > e > y or x < e < y. We may therefore define $D^* = D \cup \{(x,y) = (e,e)\}$, and the problem is equivalent to finding, for (x+1)(y+1), either its minimum in D^* if it exists at (x,y) = (e,e) (since it will coincide by continuity of functions $(x+1)(y+1), x^y, y^x$ with the infimum in D), or otherwise its infimum in D.

Define f(x,y) = xy, and $g(x,y) = x \ln(y) - y \ln(x)$. Note that the extrema of f(x,y) subject to condition g(x,y) = 0 may be found by Lagrange's multiplier method, or real constant λ exists such that

$$\lambda y = \ln(y) - \frac{y}{x},$$
 $\lambda xy = x \ln(y) - y = y \ln(x) - x,$

and since $x \ln(y) = y \ln(x)$, we find that a local extremum occurs iff x = y, ie the only local extremum of xy in D^* occurs when x = y = e, with a value e^2 . Moreover, the borders of D^* occur when $x \to 1$ and $y \to \infty$ or $vice\ versa$, for $xy \to \infty$, or the extremum of xy at x = y = e is a minimum with value e^2 . We conclude that, for $(x,y) \in D^*$, we have

$$(x+1)(y+1) = xy + x + y + 1 \ge xy + 2\sqrt{xy} + 1 \ge e^2 + 2e + 1 = (e+1)^2,$$

with equality iff x = y = e. By continuity of condition $x^y = y^x$ and of function (x + 1)(y + 1), we conclude that

$$\inf_{(x,y)\in D} (x+1)(y+1) = (e+1)^2,$$

where (x+1)(y+1) can get arbitrarily close to $(e+1)^2$ as x>e gets arbitrarily close to e, with the corresponding value of y<e getting arbitrarily close to e too, or vice versa.

Also solved by Francesco Bonesi, University of East Anglia, UK; Robert Bosch, Archimedean Academy, FL, USA; Paolo Perfetti, Università degli studi di Tor Vergata Roma, Roma, Italy; AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia.