U261. Let T),(z) be the sequence of Chebyshev polynomials of the first kind, defined by Ty(x) = 0, T3 (z) = x,
and
Tht1(z) = 22T () — Th—1(x)

for n > 1. Prove that for all > 1 and all positive integers n
< V/Tp(z) <1l+n(z-1).

Proposed by Arkady Alt, San Jose, California, USA

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain
The formal definition of Chebyshev polynomials is as in the problem statement, but with Tp(z) = 1. We will
actually use this definition in the following solution, since among other things, the definition with Ty(z) =0
results after induction in T;,(1) = n for all n, hence the second inequality would not hold. With the definition
To(x) = 1, as we will soon see, both inequalities hold.

Assume that x is a fixed value, and for said z, consider the z-dependent sequence (sy,)n>0 defined by
so =1, s1 =z, and for all n > 2, s, = 2x8,—1 — Sp,—2. Using standard techniques, it follows that

($+m)”+(x_\/m)” R (x+m)+(x_¢mz—_1) )
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where we have used the power-mean inequality, which is valid since x 4+ /22 — 1 are positive reals because
0 < Va2 -1 <z forall z > 1. Note that equality holds iff equality in the power mean inequality holds, ie
iff V22 —1=0, forx =1, oriff n =1 for all z.

The second inequality can be rewritten as
Ta(z) < (L+n(z—1))".

For n = 0, both sides are identically 1, while for n = 1, both sides are identically x, or the inequality holds
with equality for all z > 1 in these cases. For n = 2, the inequality rewrites as

222 — 1 < (2z — 1), 20z —1)2>0,

clearly true, with equality iff x = 1. Now, we will show by induction that, for all n > 2 and all x, we have
n—1
To(x) =2(x — 1) (n = k)Ti(z) + n(z — DTp(x) + 1.
k=1

For n = 2 and n = 3, this result is respectively equivalent to
Th(z) =2(z — V)Ti(z) + 2(x — 1) + 1 = 22% — 1,
Ts(x) = 2(x — 1)Ta(z) + 4(x — )T (z) + 3(x — 1) + 1 = 22T () — x,
clearly true in both cases. These are our base cases, and if the result holds for n,n — 1, then
Thyi(x) =2(x — 1)Th(x) + 2T (2) — T (w) =

n—2
=2(z — DTh(2) + 4z - VTha(2) + 2w — 1) D> _(n—k+ DTi(z) + (n+ 1)(x — DTp(x) + 1,
k=1
where we have used the hypothesis of induction for n,n — 1, and the result clearly holds for n+ 1 too. Hence
it holds for all positive integer n.
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Now, this means that, if for some n > 3 the inequality holds for 1,2,...,n — 1, then

1
To(z) <2(z—1)> (n—k) (14 k(z— 1) +n(z—1)+1,
1

3
|

=
Il

with equality iff z = 1, since Th(z) = (1+2(z—1))? iff 2 = 1, and if £ = 1 then both sides are identi-
cally 1. Using the expression for the sum of the geometric progression with ratio 1 + n(z — 1) from 1 to
(1+n(z—1))""', we obtain

n—1
I+n@z-—1))"—1=n(x-1)> 1+n(z—1)",
k=0

or it suffices to show that

3
|

1 n—1
(1+n(z—-1)F> ZM(1+k(x— k.

n
1 k=1
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If n is even, when k = § the term in the LHS is (1 + n(z — 1))%, and in the RHS is (1 + % (z — 1))%, clearly

not larger, and equal iff z = 1. Whether n is odd or even, every k other than & can be grouped in pairs of

sum n, or it suffices to show that, for all integer £ such that 1 <k < 5, we have

2(n — k)

(1+n(z—1)) + 1 +n(z-1)""> (1+k(@—1)"+ % (1+(n—E)(z—1)"".

Now, since k < n —k < n for all such n, we have 1 + k(z —1) <1+ (n—k)(x —1) < 1+ n(z — 1), with
equality iff z = 1, or it suffices to show that

n — 2k n — 2k

(1+n(z—1)""> (14 n(z—1))k,

clearly true since n — 2k > 0 and 1 + n(x — 1) > 1, with equality again iff = 1.

The conclusion follows, equality holds in both equalities iff either n = 1 and for all x > 1, or x = 1 for
all n.

Also solved by Daniel Vacaru, Colegiul Economic “Maria Teiuleanu”, Pitesti, Romania; Radouan Boukhar-
fane, Polytechnique de Montreal, Canada.
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