Senior problems

S97. Let x_1, x_2, \ldots, x_n be positive real numbers. Prove that

$$\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)^n \ge \left(\sqrt[n]{x_1 x_2 \cdots x_n}\right)^{n-1} \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}}.$$

Proposed by Arkady Alt, San Jose, California, USA

First solution by Manh Dung Nguyen, Hanoi University of Science, Vietnam Without loss of generality we may assume that $x_1 + x_2 + \cdots + x_n = n$. The inequality is equivalent to

$$(x_1x_2\cdots x_n)^{\frac{2(n-1)}{n}}(x_1^2+x_2^2+\cdots+x_n^2) \le n$$

For n = 2, the inequality reduces to $(x_1 - x_2)^4 \ge 0$.

For $n \geq 3$, assume that $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n$ and apply the **EV- Theorem:** For $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n, x_1 + x_2 + \cdots + x_n = n$ and $x_1^2 + x_2^2 + \cdots + x_n^2 = \text{constant}$ The product $x_1 x_2 \cdots x_n$ is maximal when $0 \leq x_1 = x_2 = \cdots = x_{n-1} \leq x_n$ Consequently, it suffices to show the inequality for $x_1 = x_2 = \cdots = x_{n-1} = x$ and $x_n = y$ where $0 \leq x \leq 1 \leq y$ and (n-1)x + y = n. Under the circumstance, the inequality reduces to

$$x^{\frac{2(n-1)^2}{n}}y^{\frac{2(n-1)}{n}}\left[(n-1)x^2+y^2\right] \le n.$$

For x = 0, the inequality is trivial. For x > 0, it is equivalent to $f(x) \le 0$ where

$$f(x) = \frac{2(n-1)^2}{n} \ln x + \frac{2(n-1)}{n} \ln y + \ln \left[(n-1)x^2 + y^2 \right] - \ln n.$$

With y = n - (n-1)x. We have y' = -(n-1) and

$$\frac{nf'(x)}{2(n-1)^2} = \frac{1}{x} - \frac{1}{y} + \frac{n(x-y)}{(n-1)[(n-1)x^2 + y^2]}$$
$$= \frac{(y-x)\left[[(n-1)x - y]^2 + (n-2)y(x+y)\right]}{(n-1)xy[(n-1)x^2 + y^2]} \ge 0.$$

Therefore, the function f(x) is strictly increasing on (0,1] and hence $f(x) \le f(1) = 0$. Equality occurs if and only if $x_1 = x_2 = \cdots = x_n$

Second solution by Michel Bataille, France

By homogeneity, we may suppose $x_1x_2\cdots x_n=1$ and then prove

$$(x_1 + x_2 + \dots + x_n)^{2n} \ge n^{2n-1}S$$

where $S = x_1^2 + x_2^2 + \dots + x_n^2$. Using AM-GM,

$$(x_1 + x_2 + \dots + x_n)^2 = S + 2 \sum_{1 \le i < j \le n} x_i x_j$$

$$\ge S + 2 \cdot \frac{n(n-1)}{2} \left((x_1 x_2 \cdots x_n)^{n-1} \right)^{2/(n(n-1))}$$

$$= S + n(n-1),$$

hence it suffices to show that

$$(S + n(n-1))^n \ge n^{2n-1}S.$$

Now, by AM-GM again,

$$S + n(n-1) = S + n + n + \dots + n \ge n \left(Sn^{n-1} \right)^{1/n}$$

and so

$$(S + n(n-1))^n \ge n^n S n^{n-1} = n^{2n-1} S,$$

as desired.

Also solved by Oles Dobosevych, Ukraine; Daniel Lasaosa, Universidad Publica de Navarra, Spain.