Olympiad problems

O295. Let ABC be a triangle with circumcircle Γ and incircle ω . Let D, E, F be the tangency points of ω with BC, CA, AB, respectively, let Q be the second intersection of AD with Γ , and let the T be the intersection of the tangents at B and C with respect to Γ . Furthermore, let QT intersect Γ for the second time at R. Prove that AR, EF, BC are concurrent.

Proposed by Faraz Masroor, Gulliver Preparatory, Florida, USA

O296. Let a, b, c, x, y, z be positive real numbers such that x + y + z = 1 and

$$2ab + 2bc + 2ca > a^2 + b^2 + c^2$$
.

Prove that

$$a(x+3yz) + b(y+3xz) + c(z+3xy) \le \frac{2}{3}(a+b+c).$$

Proposed by Arkady Alt, San Jose, California, USA

O297. Let m be a positive integer. Prove that $\phi(n)$ divides mn, only for finitely many square-free integers n, where ϕ is Euler's totient function.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

O298. Cells of an 11×11 square are colored in n colors. It is known that the number of cells of each color is greater than 6 and less than 14. Prove that one can find a row and a column whose cells are colored in at least four different colors.

Proposed by Nairi Sedrakyan, Yerevan, Armenia

O299. Let n be a square-free positive integer. Find the number of functions $f: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ such that $f(1)f(2) \cdots f(n)$ divides n.

Proposed by Mihai Piticari, Campulung Moldovenesc, Romania

O300. Let a, b, c be positive real numbers such that $a^2 + b^2 + c^2 + abc = 4$. Prove that

$$\sqrt{1-abc}(3-a-b-c) \ge |(a-1)(b-1)(c-1)|.$$

Proposed by Marius Stanean, Zalau, Romania