M145. Proposed by Ovidiu-Gabriel Dinu, Balcesti-Valcea, Romania.

Find all natural numbers n for which $n,\,n+2,\,n+6,\,n+8,$ and n+14 are prime numbers.

M146. Proposed by Mohammed Aassila, Strasbourg, France.

Let $a,\,b,\,c$ be three positive numbers satisfying a+b+c=1. Prove that

$$(ab)^{5/4} + (bc)^{5/4} + (ca)^{5/4} < \frac{1}{4}$$
.

M147. Proposed by the Mayhem staff.

The diameter of a large circle is broken into n equal parts to construct n smaller circles, as shown. Determine n so that the ratio of the shaded area to the unshaded area in the large circle is 3:1.

M148. Proposed by Vedula N. Murty, Dover, PA, USA.

Let x > 1, y > 1, z > 1 and $x^2 = yz$. Determine the value of

$$\left(\log_{zx} xy^4z\right)\left(\log_{xy} xyz^4\right)$$
 .

M149. Proposed by Bruce Shawyer, Memorial University of Newfoundland, St. John's, NL.

A right-angled Heron triangle ABC has the following property: the area is λ times the perimeter, where λ is a positive integer. Determine all solutions (a,b,λ) . (A Heron triangle is a triangle with integer sides and integer area.)

M150. Proposed by Arkady Alt, San Jose, CA, USA.

Let two complex numbers z_1 and z_2 satisfy the conditions

$$egin{array}{lll} z_1 + z_2 & = & -(i+1)\,, \ z_1 \cdot z_2 & = & -i\,. \end{array}$$

Without calculating z_1 and z_2 , find $z_1 \cdot \overline{z_2}$.