4031. Proposed by D. M. Bătinețu-Giurgiu and Neculai Stanciu.

Prove that

$$\frac{2F_1^4 + F_2^4 + F_3^4}{F_1^2 + F_3^2} + \frac{2F_2^4 + F_3^4 + F_4^4}{F_2^2 + F_4^2} + \dots + \frac{2F_n^4 + F_1^4 + F_2^4}{F_n^2 + F_2^2} > 2F_n F_{n+1},$$

where F_n represents the *n*th Fibonacci number $(F_0 = 0, F_1 = 1 \text{ and } F_{n+2} = F_n + F_{n+1} \text{ for all } n \ge 0)$.

4032. Proposed by Dan Stefan Marinescu and Leonard Giugiuc.

Prove that in any triangle ABC with sides a, b and c, inradius r and exadii r_a, r_b, r_c , we have:

$$\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \ge 2\sqrt{3r(r_a + r_b + r_c)}.$$

4033. Proposed by Salem Malikic.

Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ be positive real numbers and x_1, \ldots, x_n be real numbers such that $x_1 + \cdots + x_n = 1$ and $\alpha_i x_i + \beta_i \geq 0$ for all $i = 1, \ldots, n$. Find the maximum value of

$$\sqrt{\alpha_1 x_1 + \beta_1} + \sqrt{\alpha_2 x_2 + \beta_2} + \dots + \sqrt{\alpha_n x_n + \beta_n}.$$

4034. Proposed by Michel Bataille.

Evaluate

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{16^n} \sum_{k=0}^{2n} \frac{(-1)^k}{2n+1-k} \binom{2k}{k} \binom{4n-2k}{2n-k}.$$

4035. Proposed by Daniel Sitaru and Leonard Giugiuc.

Let a and b be two real numbers such that ab = 225. Find all real solutions (in real 2×2 matrices) to the matrix equation

$$X^3 - 5X^2 + 6X = \begin{pmatrix} 15 & a \\ b & 15 \end{pmatrix}.$$

4036. Proposed by Arkady Alt.

Let a, b and c be non-negative real numbers. Prove that for any real $k \geq \frac{11}{24}$ we have:

$$k(ab+bc+ca)(a+b+c) - (a^2c+b^2a+c^2b) \le \frac{(3k-1)(a+b+c)^3}{9}.$$