PROBLEMS / 213

3945. Proposed by J. Chris Fisher.

Given circles (4) and (B) with centres A and B, and a circle (C') with centre
C' that meets (A) in points A; and Ay that are not on (B), and meets (B) in
points By and Bs that are not on (A), prove that the unique conic with foci A
and B that is tangent to the perpendicular bisector of A3 Bs is tangent also to the
perpendicular bisector £ of A1 Bj.

3946. Proposed by George Apostolopoulos.

Prove that in any triangle ABC
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where R is the circumradius of ABC and w,, wy, w, are the lengths of the internal
bisectors of the angle opposite of the sides of lengths a, b, ¢, respectively.

3947. Proposed by Michel Bataille.

Let A; A3 A3 be a non-isosceles triangle and I its incenter. For ¢ = 1,2,3, let D;
be the projection of I onto A;11A;12 and U;, V; be the respective projections of
Ait1, Airo onto the line TA; (indices are taken modulo 3). Prove that
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AA1 Az Az at vertex A; (i = 1,2,3) and [XY Z] denotes the area of AXY Z.

(b)

= [A; Ay A3], where «; is the angle of

3948. Proposed by George Apostolopoulos.
Let ay,as,...a, be real numbers such that ay > as > ... > a,. Prove that
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When does the equality hold ?

3949. Proposed by Arkady Alt.
For any positive real ¢ and b, find
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