Original setting (before correction):

3882. Proposed by Mehmet Sahin.

Let ABC be a right angle triangle with $\angle CAB = 90^{\circ}$. Let [AD] be an altitude and let I_1 and I_2 be the incenters of the triangles ABD and ADC, respectively. Let ρ be the radius of the circle through the points B, I_1 and I_2 and let r be the inradius of the triangle ABC. Prove that

$$\frac{\rho}{r} = \sqrt{2 + \sqrt{2}}.$$

After correction:

3882. Originally proposed by Mehmet Sahin; corrected version by Arkady Alt.

Let ABC be a right angle triangle with $\angle CAB = 90^{\circ}$ and hypotenuse *a*. Let [AD] be an altitude and let I_1 and I_2 be the incenters of the triangles ABD and ADC, respectively. Let ρ be the radius of the circle through the points B, I_1 and I_2 and let r be the inradius of the triangle ABC. Prove that

$$\rho = \sqrt{\frac{a^2 + 2ar + 2r^2}{2}}$$

and $\min \frac{\rho}{r} = \sqrt{3} + \sqrt{6}$.