3555. Proposed by Vahagn Aslanyan, Yerevan, Armenia.

Let a and b be positive integers, 1 < a < b, such that a does not divide b. Prove that there exists an integer x such that $1 < x \le a$ and both a and b divide $x^{\phi(b)+1}-x$, where ϕ is Euler's totient function.

3556. Proposed by Arkady Alt, San Jose, CA, USA.

For any acute triangle with side lengths a, b, and c, prove that

$$(a+b+c)\min\{a,b,c\} \le 2ab+2bc+2ca-a^2-b^2-c^2$$
.

3557. Proposed by Paolo Perfetti, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma, Rome, Italy.

Let $\{a_k\}_{k=1}^{\infty}$ be a sequence of positive real numbers with $\sum_{k=1}^{\infty} a_k = 1$

and
$$a_{k+1} \leq \frac{a_k}{1-a_k}$$
. Let $S_n^{(p)} = \left(\sum\limits_{k=1}^n a_k^p\right)^{1/p}$, and for $p \geq 1$ prove that

$$\lim_{n o \infty} \sum_{k=n+1}^n rac{k}{n} \left(\prod_{j=1}^n rac{j^{1/p} a_{k+j} a_j}{S_{k+j}^{(p)}}
ight)^{1/n} \ = \ 0 \, .$$

3558. Proposed by Johan Gunardi, student, SMPK 4 BPK PENABUR, Jakarta, Indonesia.

Given two distinct positive integers a and b, prove that there exists a positive integer n such that an and bn have different numbers of digits.

3559★. Proposed by Thanos Magkos, 3rd High School of Kozani, Kozani, Greece.

Let ABC be a triangle with side lengths a, b, c, inradius r, circumradius R, and semiperimeter s. Prove that

$$\frac{(b+c)^2}{4bc} \leq \frac{s^2}{3r(4R+r)}.$$

3560. Proposed by Pham Van Thuan, Hanoi University of Science, Hanoi, Vietnam.

Let x and y be real numbers such that $x^2+y^2=1$. Find the maximum value of

$$f(x,y) = |x-y| + |x^3 - y^3|$$
.