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3341. [2008 : 240, 242] Proposed by Arkady Alt, San Jose, CA, USA.

For any triangle ABC with sides of lengths a, b, and ¢, prove that
V3(R, + Ry + R.) < a + b+ ¢, where R,, Ry, and R, are the distances
from the incentre of AABC to the vertices A, B, and C, respectively.
Solution by George Apostolopoulos, Messolonghi, Greece.

Let s be the semiperimeter of triangle ABC. We have
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Similarly,
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Using the Cauchy-Schwarz Inequality, we obtain
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= (ab—l—bc—l—ca)(3——> = ab+ bc+ ca,
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or
V3(Ro + Ry + R.) < /3(ab+ bc+ ca).

It suffices to show that

vV3(ab+bc+ca) < a+b+ec.

The last inequality is equivalent to a? 4+ b2 4 ¢2 > ab + bc + ca, which is
well known and easy to prove. This completes the solution.
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