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SOLUTIONS

Aucun probléme n’est immuable. L’éditeur est toujours heureux d’en-
visager la publication de nouvelles solutions ou de nouvelles perspectives
portant sur des problémes antérieurs.
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3330. [2008 : 171, 174] Proposed by Arkady Alt, San Jose, CA, USA.

Let n be anatural number, let r be areal number, and let a4, a-, ..., a,

n
be positive real numbers satisfying [[ ax = r™; prove that
k=1

n

Z 1 > n
e 1+ ag)® — (1+r)3’

(a) forn = 2if and only if r > 3;

— 9 1 .
(b) forn_31fr2ﬁ,

a4 1,
(c) forn =4 ifr > 75

(d) forn > 5ifand only if » > ¥/n — 1.

Solution to parts (a)-(c) by Oliver Geupel, Briih, NRW, Germany, solution
to part (d) by the proposer.

(a) The statement is not correct in the strict sense, because for each » > 0
the inequality is satisfied by a; = a> = r (and similarly for part (d)). We
prove instead that for r > 0, the inequality

1 1 2
+ > )
1+a)® (14052 = (1+1)
holds for all positive real numbers a and b satisfying ab = =2 if and only if
r > %

M

If ab > %, then the inequality (1) follows from the result given in CRUX
with Mayhem, problem 3319 (solution at [2009 : 121-122]).
Conversely, suppose that r < % Let f : [0,00) — R be given by

6(3r — 1)
r(14r)s
exists an xo > O such that f(xzo) < f(r) =

We have f/(r) = < 0 and f” is continuous. It follows that there
2

axre We conclude that
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2
a=zx¢9and b = % violate the inequality (1). This completes the proof of
part (a). Equality holds if and only if a = b = r.

(b) We prove the result under the less restrictive condition » > 0.47. With-
out loss of generality, let as < r and put £ = y/a1a2. Then £ > r, and by
part (a) we have

1 " 1 > 2
(1+a1)3 (14a2)3 = 14+=x)8°
It therefore suffices to show that
2 8 3
+ 5 > :
(T+a® " (@49 = A+7)

Clearing denominators and rearranging terms in this last inequality, we find
that it is equivalent to

7
(@ —7)* Y pr(r)z® > o0,

k=0
where
po(r) r7(2r3 + 6r% + 6r — 1)
pi(r) = r® (47'3 +12r% 4+ 37 — 2)
p2(r) = r*(6r* +15r° + 1872 4 15r — 3)
ps(r) = 7?(5r* 4+ 18r® + 337> + 5r — 6)
pa(r) = r(47°5 4+ 217 + 27r3 + 1372 + 9r — 3)
ps(r) = r(3r*+15r® 4217 + 21r — 3) — 6
pe(r) = 2r*+9r3 +15r2 4+ 510 — 6
pr(r) = r*+3r2 +3r—2

It suffices to prove that pg(r) > Oforr > 047and 0 < k < 7.
Using a calculator, we verify that p,(0.47) > 0 for each k. Moreover, the
polynomials pg(7) are increasing functions for real arguments » > 0.47. This
completes the proof. Equality holds if and only if a; = a3 = a3 = r.

(c) We prove the result under the weaker condition » > 0.59. Without loss
of generality, let ay < r and put £ = ajazas. Then = > r, and by part (b)
we have

1 1 1 3
+ + > -
(14+a1)®  (A4+a2)®  (1+a3)? (14 z)8
It therefore suffices to show that
3 z° 4
+ 5 = .
(1+z)® (23 +r4) (1+r)®
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Clearing denominators and rearranging terms in this last inequality, we find
that it is equivalent to

(@ —r)* Y ar(r)z® > 0,

k=0
where
qo(r) r10 (37‘3 + 972 + 9r — 1)
a(r) = r°(6r® 4 18r? + 6r — 2)
q2(r) = r%(9r® 4+ 1577 + 3r — 3)
gs(r) = r°(8r* + 217 + 2772 4 23r — 3)
qa(r) = r5(7'r4 + 2773 + 51r% + 137 — 6)
gs(r) = rt (6r4 + 3373 + 3972 + 3r — 9)
qs(r) = r%(57° +27r* + 360 + 20r* + 15r — 3)
q7(r) = r(4r® 4 21r* 4 337 + 37r% + 3r — 6)
qgs(r) = r(3r*+15r®+30r°> +18r—9) — 9
go(r) = 2r*4+9r> + 157> +3r — 9
qio(r) = r+3r2+3r—3

It suffices to prove that gx(r) > 0 for » > 0.59 and 0 < k£ < 10.
Using a calculator, we verify that g, (0.59) > 0 for each k. Moreover, the
polynomials g () are increasing functions for real arguments » > 0.59. This
completes the proof. Equality holds if and onlyif a; = az = a3 = a4 = .

(d) Suppose that r is such that the inequality holds for all a4, as, ..., a,
subject to the given constraint. Let x be a positive real number, let a; = =
fori=1,2,...,n—1, and let a,, = # Then

n—1 z3n—3 n

(1+=z)° * (zn=1 4+ 77)° = (1+r)3

n

holds for all z > 0. Taking the limit as  — oo yields (e < 1, hence
r>Yn—1.

Conversely, suppose that » > &/n — 1. We will prove by Mathematical
Induction that if n > 4, r > max{%\/Z /n— 1}, and a4, as, ..., a, satisfy

. . L 1 n
the given constraint, then > ;
& 2 T Fas 2 TP

Note that the statement is true for n = 4 by part (c).
Now suppose that the statement is true for some n > 4 and that
r > max{%,\3/n+l — 1} = +v/n+1-—1, and let a4, a2, ..., Gny1

be positive real numbers such that ajaz---a,11 = r*t1. By symmetry,
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we may assume that a; > a2 > --+ > ant1. Let x = Yaiaz- - - a,, then
n+41
r and "t > y7t1 sothatz > r > YnF1—-1> %.

T 2> Qny1 =

xrm

n
By induction, we have }_ ! " hence

>
=1 (1 +ar)® = (1 +a)%

n 1}311

5 1
> .
kzz:l I+ar)® = (14+x)3 + (zn + 7.n+1)3

Let h(xz) be the function of = on the right side of the above inequality for
x > 7. After some (tedious) calculations we find that

3n(zntt — 1) P(x) .
(1 + )4 (an 4 nt1)?

P(.’B) — 6.’]32"7‘n+1 + 4w2n+1rn+1 + 4$nr2n+2
+ $2n+2,’,n+1 + mn+1r2n+2 + ,r3'n+3 _ m3n—1 .

h(x) =

Now P(r) = 3~ 1(r + 1)3(3r — 1) > 0, since r > % > %, and by degree
considerations P(x) — —oo as ¢ — oo, hence P(z) has exactly one root
xo € [0,00). [Ed.: note that for positive x and positive Cy, Ca, ..., Cp,
the function % + S::ll + e+ % + Cy is decreasing, and wpsy(f)l is of this

form.] So, P(xz) > 0 for € [r,z¢) and P(z) < O for € (xo, c0). Hence,
h(zx) is increasing on [r, z¢) and decreasing on (xg, o0). Thus,

n r3n n+1
min h(x) = h(r) = + =
M = M) = e T e T @
and for any « € [xq, c0) we have
. n+1
h(z) > wll»lgo h(z) = 1 > m = h(r).
Therefore, the minimum value of h(x) on [r,00) is h(r) = 7(17’_':"T1)3, which

completes the induction step and the proof.

Also solved by the proposer (parts (a)-(c)). There was one incomplete solution submitted.
The proposer leaves Crux readers with the problem of determining the minimum values
of » for which parts (b) and (c) hold.

B e S U

3338. [2008 : 239, 242] Proposed by Toshio Seimiya, Kawasaki, Japan.

A convex cyclic quadrilateral ABC D has an incircle with centre I. Let
P be the intersection of AC and BD. Prove that AP : CP = AI? : CI>.



