3298. Proposed by Stanley Rabinowitz, MathPro Press, Chelmsford, MA, USA.

Let ABC be a triangle of area $\frac{1}{2}$ in which a is the length of the side opposite vertex A. Prove that

$$a^2 + \csc A \geq \sqrt{5}$$
.

[*Ed.:* The proposer's only proof of this is by computer. He is hoping that some *CRUX with MAYHEM* reader will find a simpler solution.]

3299. *Proposed by Victor Oxman, Western Galilee College, Israel*. Given positive real numbers a, b, and w_b, show that

- (a) if a triangle ABC exists with BC=a, CA=b, and the length of the interior bisector of angle B equal to w_b , then it is unique up to isomorphism;
- (b) for the existence of such a triangle in (a), it is necessary and sufficient that

$$|b|> rac{2a|a-w_b|}{2a-w_b} \, \geq \, 0\,;$$

- (c) if h_a is the length of the altitude to side BC in such a triangle in (a), we have $b>|a-w_b|+\frac{1}{2}h_a$.
- **3300**. Proposed by Arkady Alt, San Jose, CA, USA.

Let $a,\ b,$ and c be positive real numbers. For any positive integer n define

$$F_n \; = \; \left(rac{3(a^n+b^n+c^n)}{a+b+c} - \sum_{ ext{cyclic}} rac{b^n+c^n}{b+c}
ight) \; .$$

- (a) Prove that $F_n \geq 0$ for $n \leq 5$.
- (b)★ Prove or disprove that $F_n \ge 0$ for $n \ge 6$.