3066. Proposed by Gabriel Dospinescu, Onesti, Romania.

Given an integer n>2, let $A_1,\,A_2,\,\ldots,\,A_n$ and $B_1,\,B_2,\,\ldots,\,B_n$ be subsets of $S=\{1,\,2,\,\ldots,\,n\}$ with the property that for all $i,\,j\in S$, the subsets A_i and B_j have exactly one element in common. Prove that, if there are at least two distinct subsets among $B_1,\,B_2,\,\ldots,\,B_n$, then there exists a non-empty subset $T\subseteq S$ that has an even number of elements in common with each of the subsets $A_1,\,A_2,\,\ldots,\,A_n$.

3067. Proposed by Gabriel Dospinescu, Onesti, Romania.

Find all functions $f:(0,\infty)\to(0,\infty)$ such that

- 1. f(f(f(x))) + 2x = f(3x) for all x > 0, and
- $2. \lim_{x \to \infty} (f(x) x) = 0.$

3068. Proposed by Vasile Cîrtoaje, University of Ploiesti, Romania.

Let $a,\ b,\ c$ be non-negative real numbers, no two of which are zero. Prove that

$$\sqrt{1+rac{48a}{b+c}}+\sqrt{1+rac{48b}{c+a}}+\sqrt{1+rac{48c}{a+b}} \ \geq \ 15$$
 ,

and determine when there is equality.

3069. Proposed by Cristinel Mortici, Valahia University of Targoviste, Romania.

Let
$$A,B\in M_2(\mathbb{C})$$
 be such that $(AB)^2=A^2B^2$. Prove that $\det(I+AB-BA)\ =\ 1$.

3070. Proposed by Zhang Yun, High School attached to Xi^{\prime} An Jiao Tong University, Xi^{\prime} An City, Shan Xi, China.

Let x_1, x_2, \ldots, x_n be positive real numbers such that

$$x_1 + x_2 + \cdots + x_n \geq x_1 x_2 \cdots x_n$$
.

Prove that

$$(x_1x_2\cdots x_n)^{-1}\left(x_1^{n-1}+x_2^{n-1}+\cdots+x_n^{n-1}\right) \geq \sqrt[n-1]{n^{n-2}},$$

and determine when there is equality.

3071. Proposed by Arkady Alt, San Jose, CA, USA.

Let k>-1 be a fixed real number. Let $a,\,b,\,$ and c be non-negative real numbers such that a+b+c=1 and ab+bc+ca>0. Find

$$\min\left\{\frac{(1+ka)(1+kb)(1+kc)}{(1-a)(1-b)(1-c)}\right\}.$$