$$Re\left(\sum_{k=1}^{n} z_k w_k\right) \le \left|\sum_{k=1}^{n} z_k w_k\right| \le \sum_{k=1}^{n} |z_k w_k|,$$

and the inequality amounts to show that

$$2\sqrt{\frac{3}{20}} \frac{3n^2 + 6n + 1}{n^2 + 3n + 2} \ge 1 \iff n \le -\frac{7}{4}, \ n \ge 1.$$

This completes the proof.

Solution 4 by Nicusor Zlota, "Traian Vuia" Technical College, Focsani, Romania

Let $z_k = x_k + iy_k$ and $w_k = a_k + ib_k$, for $0 \le k \le n$. We can assume that $x_k, y_k, a_k, b_k \ge 0$, because we can increase the left hand side of the statement of the problem by using absolute values.

We wish to prove the inequality:

$$\sum_{k=1}^{n} \left(a_k x_k - b_k y_k \right) \le \frac{3}{(n+1)(n+2)} \sum_{k=1}^{n} \left(x_k^2 + y_k^2 \right) + \frac{3n^2 + 6n + 1}{20} \sum_{k=1}^{n} \left(a_k^2 + b_k^2 \right).$$

Because of symmetry, we need only show that:

$$a_k x_k \le \frac{3}{(n+1)(n+2)} x_k^2 + \frac{3n^2 + 6n + 1}{20} a_k^2.$$

Considering this as a quadratic inequality for the variable x_k , we see that the discriminant is negative.

$$\Delta = a_k^2 - 4\frac{3}{(n+1)(n+2)} \frac{3n^2 + 6n + 1}{20} a_k^2 = a_k^2 \left(\frac{-4n^2 + 3n + 7}{5(n+1)(n+2)} \right) < 0.$$

Hence, the problem is solved.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL, and the proposer.

• 5342: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let $a, b, c, \alpha > 0$, be real numbers. Study the convergence of the integral

$$I(a,b,c,\alpha) = \int_1^\infty \left(a^{1/x} - \frac{b^{1/x} + c^{1/x}}{2}\right)^\alpha dx.$$

The problem is about studying the conditions which the four parameters, a, b, c, and α , should verify such that the improper integral would converge.

Solution 1 by Arkady Alt, San Jose, CA

Case 1. If a = b = c, then for any nonzero x, $a^{\frac{1}{x}} - \frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2} = 0$, so $I(a, b, c, \alpha) = 0$ for any real $\alpha > 0$.

Case 2. Suppose α isn't an integer. Then $a^{\frac{1}{x}} - \frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2}$ must be nonnegative for any x and in particular, it must be positive for x = 1, that is $a \ge \frac{b+c}{2}$.

Since $\begin{cases} 2a = b + c \\ b = c \end{cases}$ \iff a = b = c then, to avoid the trivial case 1, we will consider a, b, c such that

$$a > \frac{b+c}{2}$$
 or $\begin{cases} 2a = b+c \\ b \neq c. \end{cases}$

Then, by the AM-PM inequality, for x > 1 we have

$$\frac{b+c}{2} > \left(\frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2}\right)^x \iff \left(\frac{b+c}{2}\right)^{\frac{1}{x}} > \frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2},$$

and we obtain $a^{\frac{1}{x}} > \frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2}$ for any x > 1 and that the integral is defined.

For any real p>0 we have $\lim_{t\to 0}\frac{p^t-1}{t}=\ln p$. So, $\lim_{x\to\infty}x\left(a^{\frac{1}{x}}-\frac{b^{\frac{1}{x}}+c^{\frac{1}{x}}}{2}\right)=$

$$\lim_{x\to\infty}x\left(a^{\frac{1}{x}}-1\right)-\frac{1}{2}\left(\lim_{x\to\infty}x\left(b^{\frac{1}{x}}-1\right)+\lim_{x\to\infty}x\left(c^{\frac{1}{x}}-1\right)\right)=\ln a-\frac{\ln b+\ln c}{2}=\ln\frac{a}{\sqrt{bc}}>0,$$

because $a > \sqrt{bc}$ if $b \neq c$ or if $a > \frac{b+c}{2}$.

Therefore, $\lim_{x \to \infty} \frac{\left(a^{\frac{1}{x}} - \frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2}\right)^{\alpha}}{\frac{1}{x_{+}^{\alpha}}} = \ln^{\alpha} \frac{a}{\sqrt{bc}} > 0$, and by the Limit Comparison Test,

 $I(a,b,c,\alpha)$ converges iff $\frac{1}{x^{\alpha}}$ converges; that is, $I(a,b,c,\alpha)$ converges if $\alpha > 1$ and diverges if $\alpha \in (0,1]$.

Case 3. Let α be a positive integer. Then the expression $\left(a^{\frac{1}{x}} - \frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2}\right)^{\alpha}$ is defined for any positive a, b, c and since

$$\lim_{x \to \infty} \left(a^{\frac{1}{x}} - \frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2} \right)^{\alpha} = \ln^{\alpha} \frac{a}{\sqrt{bc}} > 0$$

is the limit of $I(a,b,c,\alpha)$ for $a>\sqrt{bc}$ and when $\alpha>1$. So the situation of $a=\sqrt{bc}$ must be analyzed.

Then
$$\left(a^{\frac{1}{x}} - \frac{b^{\frac{1}{x}} + c^{\frac{1}{x}}}{2}\right)^{\alpha} = \frac{(-1)^{\alpha} \left(b^{\frac{1}{2x}} - c^{\frac{1}{2x}}\right)^{2\alpha}}{2^{\alpha}}.$$

Assume, without loss of generality, b > c. Since $\lim_{x \to \infty} x \left(b^{\frac{1}{2x}} - a^{\frac{1}{2x}} \right) = \frac{1}{2} \ln \frac{b}{c} > 0$,

then
$$\lim_{x\to\infty} \frac{\left(\frac{b^{\frac{1}{2x}}-a^{\frac{1}{2x}}}{a^{\frac{1}{2\alpha}}}\right)^{2\alpha}}{\frac{1}{x^{2\alpha}}} = \left(\frac{1}{2}\ln\frac{b}{c}\right)^{2\alpha} > 0$$
, and by the Limit Comparison Test

 $I(a,b,c,\alpha)$ is convergent iff $\frac{1}{r^{2\alpha}}$ convergent, that is $I(a,b,c,\alpha)$ convergent if $\alpha > 1/2$ and divergent if $\alpha \in (0, 1/2]$.

In summary,

- If a = b = c then $I(a, b, c, \alpha) = 0$ is convergent for any real α ;
- If $\alpha \in \Re_+/N$ and $a > \frac{b+c}{2}$ or $\begin{cases} 2a = b+c \\ b \neq c \end{cases}$ then $I(a,b,c,\alpha)$ is convergent for $\alpha > 1$ and divergent for $\alpha \in (0)$
- If $\alpha \in \Re_+/N$ and $a > \sqrt{bc}$ then $I(a, b, c, \alpha)$ is convergent for $\alpha > 1$ and divergent for $\alpha \in (0,1];$
- If $\alpha \in N$ and $a = \sqrt{bc}$ then $I(a, b, c, \alpha)$ is convergent for $\alpha > 1/2$ and divergent for $\alpha \in (0, 1/2].$

Solution 2 by Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy

To have the integral well defined, a necessary condition is $2a \ge b + c$.

The convergence occurs in one of the following cases:

- 1) if a = b = c we have convergence for any value of α
- 2) if $\alpha > 1$ we have convergence regardless the values of a, b, c
- 3) if $1/2 < \alpha \le 1$ and $a = \sqrt{bc}$ we have convergence.

Proof

If α is irrational or it is a rational p/q reduced to the lowest terms with q even, we must impose

$$2a^{1/x} - b^{1/x} - c^{1/x} \ge 0$$

but this doesn't seem to me easy to prove. A necessary condition is $2a \ge b + c$ corresponding to x=1.

If a = b = c the integrand is identically zero and then the integral converges regardless the value of α .

From now on,
$$a \neq b$$
 or $b \neq c$ or $a \neq c$.
We have $a^{1/x} = e^{\frac{\ln a}{x}} = 1 + \frac{\ln a}{x} + \frac{\ln^2 a}{2x^2} + \frac{\ln^3 a}{6x^3} + O(x^{-4})$ whence