Let
$$f(x) = \frac{-1 + (n-1)x^2 + (n+1)x^4}{x(x^2+1)}$$
. One can easy observe that
$$f'(x) = \frac{1 + (n+2)x^2 + (2n+4)x^4 + (n+1)x^6}{x^2(1+x^2)^2}$$
$$f''(x) = -\frac{2(1+3x^2+2x^6)}{x^3(1+x^2)^3}$$

It is obvious that f'(x) > 0 and f''(x) < 0 for any real positive number x, which implies that the function f(x) is an increasing and concave function in the real positive domain. Applying Jensen's inequality we have

$$\sum_{cycl} \frac{-1 + (n-1)x^2 + (n+1)x^4}{x(x^2+1)} = \sum_{cycl} f(x) \le 3f\left(\frac{1}{3}\sum_{cycl} x\right)$$

Doing easy manipulations, one can easy observe that

$$\alpha = \sum_{cycl} \frac{(n+1)x^3 + nx}{x^2 + 1} = \sum_{cycl} nx + \sum_{cycl} \frac{x^3}{x^2 + 1} > n \sum_{cycl} x$$

Finally, using the above results we have

$$\sum_{cycl} \frac{1}{x} = \alpha - \sum_{cycl} \frac{-1 + (n-1)x^2 + (n+1)x^4}{x(x^2 + 1)}$$

$$\geq \alpha - 3f\left(\frac{1}{3}\sum_{cycl}x\right)$$

$$> \alpha - 3f\left(\frac{\alpha}{n}\right)$$

$$= \alpha - 3f\left(\frac{\alpha}{3n}\right)$$

$$= \frac{9n}{\alpha} - \frac{\alpha}{n} + \frac{9n\alpha}{9n^2 + \alpha^2}$$

and this is the end of the proof.

• **5275**: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain Find all real solutions to the following system of equations

$$\underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+x_1}}}_{n} + \underbrace{\sqrt{2-\sqrt{2+\ldots+\sqrt{2+x_1}}}_{n}}_{n} = x_2\sqrt{2},$$

$$\underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+x_2}}}_{n} + \underbrace{\sqrt{2-\sqrt{2+\ldots+\sqrt{2+x_2}}}_{n}}_{n} = x_3\sqrt{2},$$

$$\underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+x_{n-1}}}}_{n} + \underbrace{\sqrt{2-\sqrt{2+\ldots+\sqrt{2+x_{n-1}}}}_{n}}_{n} = x_n\sqrt{2},$$

$$\underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+x_{n-1}}}}_{n} + \underbrace{\sqrt{2-\sqrt{2+\ldots+\sqrt{2+x_{n-1}}}}}_{n} = x_1\sqrt{2},$$

where $n \geq 2$.

Solution by Arkady Alt, San Jose, CA

Let $h(x) := \sqrt{2+x}$. Then h(x) is a function defined on $[-2,\infty)$ with range $[0,\infty)$.

Since $h: [-2,\infty) \longrightarrow [0,\infty)$ then for any $n \in N$ we can define recursively n-iterated function $h_n: [-2,\infty) \longrightarrow [0,\infty)$, namely $h_1 = h$ and $h_{n+1} = h \circ h_n, n \ge 1$.

Let
$$f(x) := \frac{h_n(x) + \sqrt{2 - h_{n-1}(x)}}{\sqrt{2}}$$
 for $x \in [-2, \infty)$ such that $h_{n-1}(x) \le 2$.

Since $h_{n-1}(x) \le 2 \iff h_{n-1}^2(x) \le 4 \iff h_{n-2}(x) \le 2 \iff \dots \iff h_1(x) \le 2 \iff$

then Dom(f) = [-2, 2]. Moreover, applying inequality $\frac{a+b}{\sqrt{2}} \le \sqrt{a^2+b^2}$ to $a = h_n(x)$ and $b = \sqrt{2 - h_{n-1}(x)}$ we obtain $f(x) \le 2$ and since by definition $f(x) \ge 0$ for $x \in Dom(f)$ then $range(f) \subset [0,2]$.

Using
$$f$$
 we can rewrite original system as follow:
(1)
$$\begin{cases} x_{k+1} = f(x_k), k = 1, 2, ..., n-1 \\ x_1 = f(x_n) \end{cases}$$
.

Since $x_k \in [0, 2], k = 1, 2, ..., n$ then by setting $t_k := \cos^{-1}\left(\frac{x_k}{2}\right), k = 1, 2, ..., n$ we obtain $t_k \in \left[0, \frac{\pi}{2}\right], \ x_k = 2\cos t_k, \ k = 1, 2, ..., n.$

Noting that $h(2\cos t) = 2\cos t2$ for $t \in \left[0, \frac{\pi}{2}\right]$ by Math. Induction we obtain

$$h_k(2\cos t) = 2\cos\frac{t}{2^k}, k = 1, 2, ..., ...$$
 and, therefore, $f(2\cos t) =$

$$\frac{1}{\sqrt{2}} \left(2\cos\frac{t}{2^n} + \sqrt{2 - 2\cos\frac{t}{2^{n-1}}} \right) = 2\left(\frac{1}{\sqrt{2}}\cos\frac{t}{2^n} + \frac{1}{\sqrt{2}}\sin\frac{t}{2^n} \right) = 2\cos\left(\frac{\pi}{4} - t2^n \right).$$

Since $\frac{\pi}{4} - \frac{t}{2^n} \in \left[0, \frac{\pi}{2}\right]$ for $t \in \left[0, \frac{\pi}{2}\right]$ then $\frac{\pi}{4} - \frac{t_k}{2^n} \in \left[0, \frac{\pi}{2}\right]$ as well as $t_k \in \left[0, \frac{\pi}{2}\right]$ for

$$\iff \begin{cases} 2\cos t_{k+1} = 2\cos\left(\frac{\pi}{4} - \frac{t_k}{2^n}\right), k = 1, 2, ..., n - 1\\ 2\cos t_1 = 2\cos\left(\frac{\pi}{4} - \frac{t_n}{2^n}\right) \end{cases} \iff \begin{cases} t_{k+1} = \frac{\pi}{4} - \frac{t_k}{2^n}, k = 1, 2, ..., n - 1 \end{cases}$$

(2)
$$\begin{cases} t_{k+1} = \frac{\pi}{4} - \frac{t_k}{2^n}, k = 1, 2, ..., n - 1 \\ t_1 = \frac{\pi}{4} - t_n 2^n \end{cases}.$$

Lemma:

Let a, b be real numbers such that $|a| \neq 1$. Then system of equations

$$\begin{cases} t_{k+1} = b + at_k, k = 1, 2, ..., n - 1 \\ t_1 = b + at_n \end{cases}$$

have only solution $t_1 = t_2 = \dots = t_n = \frac{b}{1-a}$.

Proof: Noting that $\frac{b}{1-a} = b+a \cdot \frac{b}{1-a}$ and denoting $c := \frac{b}{1-a}$ we obtain $t_{k+1} = b+at_k \iff t_{k+1}-c = a\left(t_k-c\right), k=1,2,...n-1$ and $t_1 = b+at_n \iff t_1-c = a\left(t_n-c\right)$. Since $t_k-c, k=1,2,...$ is geometric sequence we have $t_k-c = a^{k-1}\left(t_1-c\right), k=1,2,...n-1$ and therefore, $t_1-c = a \cdot a^{n-1}\left(t_1-c\right) \iff t_1-c = a^n\left(t_1-c\right) \iff (t_1-c)\left(1-a^n\right) = 0 \iff t_1=c$. That yield $t_k-c = a^{k-1}\left(t_1-c\right) = 0 \iff t_k=c, k=2,...,n$.

Thus,
$$t_1 = t_2 = \dots = t_n = c = \frac{b}{1-a}$$
.

Applying the Lemma with $a=-\frac{1}{2^n}$ and $b=\frac{\pi}{4}$ we obtain the only solution of (2),

$$t_1 = t_2 = \dots = t_n = \frac{2^{n-2}\pi}{2^n + 1}$$
 and then $x_1 = x_2 = \dots = x_n = 2\cos\left(\frac{2^{n-2}\pi}{2^n + 1}\right)$ is the only solution of original system.

Also solved by Adrian Naco, Polytechnic University, Tirana, Albania; Paolo Perfetti, Department of Mathematics, "Tor Vergata" University, Rome, Italy; and the proposer.

- 5276: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
 - (a) Let $a \in (0,1]$ be a real number. Calculate

$$\int_0^1 a^{\left\lfloor \frac{1}{x} \right\rfloor} dx,$$

where |x| denotes the floor of x.

(b) Calculate

$$\int_0^1 2^{-\left\lfloor \frac{1}{x} \right\rfloor} dx.$$

Solution 1 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

(a) Using the substitution 1/x = y, the integral becomes $I = \int_1^\infty a^{\lfloor y \rfloor}/y^2 dy$. For any positive integer k and $y \in [k, k+1)$ we have $\lfloor y \rfloor = k$. Then

$$\begin{split} I &= \sum_{k=1}^{\infty} \int_{k}^{k+1} a^k/y^2 dy = \sum_{k=1}^{\infty} a^k \left(\frac{1}{k} - \frac{1}{k+1}\right) \\ &= \sum_{k=1}^{\infty} \frac{a^k}{k} - \sum_{k=1}^{\infty} \frac{a^k}{k+1} \text{(since both series are absolutely convergent)} \\ &= -\ln(1-a) + \frac{\ln(1-a) + a}{a}. \end{split}$$

Since
$$\sum_{k=1}^{\infty} a^k = \frac{1}{1-a}$$
, and $\frac{a^k}{k} = \int_0^a x^{k-1} dx$ for $k \ge 1$.