U113. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that f is a periodic function but it does not have a least period.

Proposed by Radu Ţiţiu, Targu-Mures, Romania

First solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy Not having a least period means that for all r > 0 there exists $T_r < r$ such that $f(x+T_r) = f(x)$ for all $x \in \mathbf{R}$. Let's suppose that f is not constant. This means that there exists two points, $x_1 > x_0$ such that $f(x_1) > f(x_0)$. Without loss of generality we may suppose $f(x_0) = 0$ and $f(x_1) > 0$. Let d be $x_1 - x_0$. The continuity of f implies that in an open neighborhood of x_1 , say (a, b), $f(x) > f(x_1)/2$ holds. Starting by x_0 we move toward right doing jumps of lengths $T_{d/2} < d/2$. The value assumed by f after every jump is 0 by periodicity but after a while, inevitably we enter (a, b) and we fall in contradiction because f should assume the value 0 and a value greater than $f(x_1)/2$.

Second solution by Arkady Alt, San Jose, California, USA

Let Ω_+ be set of all positive periods of function f and let $\omega_* = \inf \Omega_+$.

Since by definition "least period" mean least positive period then by problem's condition $\omega_* \notin \Omega_+$. Consider two cases:

1. $\omega_* = 0$. Then for any natural *n* there is $\omega_n \in \Omega_+$ such that $0 < \omega_n < \frac{1}{n}$.

Let x by any real number and let $x_n := x - \omega_n \left| \frac{x}{\omega_n} \right|$ then $0 \le x < \omega_n$ and,

therefore, $\lim_{n\to\infty} x_n = 0$. Since $f(x) = f\left(x_n + \omega_n \left\lfloor \frac{x}{\omega_n} \right\rfloor\right) = f(x_n)$ and f is continuous

function then
$$f(x) = \lim_{n \to \infty} f(x) = \lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f(0)$$
.

2. $\omega_* > 0$. Then for any natural *n* there is $\omega_n \in \Omega_+$ such that $\omega_* < \omega_n < \omega_* + \frac{1}{n}$.

Let x be any real number. Since $\lim_{n\to\infty} \omega_n = \omega_*$ and f is continuous function then

$$f\left(x\right) = \lim_{n \to \infty} f\left(x\right) = \lim_{n \to \infty} f\left(x + \omega_n\right) = f\left(\lim_{n \to \infty} \left(x + \omega_n\right)\right) = f\left(\omega_*\right).$$

Thus we obtain that ω_* is positive period of f, that is contradiction with $\omega_* \notin \Omega_+$

and this prove that only constant functions is solution of problem.

Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain