S233. In triangle ABC with $\angle C = 60^{\circ}$, let AA' and BB' be the angle bisectors of $\angle A$ and $\angle B$. Prove that

$$\frac{a+b}{A'B'} \le \left(1 + \frac{c}{a}\right) \left(1 + \frac{c}{b}\right).$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

 $Solution\ by\ Arkady\ Alt\ ,\ San\ Jose\ , California,\ USA$ Since $CA'=\frac{ab}{b+c},CB'=\frac{ab}{a+c},$ and $\angle C=60^\circ,$ the Law of Cosines yields

$$A'B'^{2} = \frac{a^{2}b^{2}}{\left(a+c\right)^{2}} + \frac{a^{2}b^{2}}{\left(b+c\right)^{2}} - \frac{a^{2}b^{2}}{\left(a+c\right)\left(b+c\right)},$$

and, therefore,

$$\frac{a+b}{A'B'} \le \left(1 + \frac{c}{a}\right)\left(1 + \frac{c}{b}\right) \text{ which rewrites as } ab\left(a+b\right) \le A'B'\left(a+c\right)\left(b+c\right)$$

becomes equivalent to proving that

$$a^{2}b^{2}(a+b)^{2} \le \left(\frac{a^{2}b^{2}}{(a+c)^{2}} + \frac{a^{2}b^{2}}{(b+c)^{2}} - \frac{a^{2}b^{2}}{(a+c)(b+c)}\right)(a+c)^{2}(b+c)^{2},$$

i.e.

$$(a+b)^2 \le (b+c)^2 + (a+c)^2 - (a+c)(b+c)$$
.

Since $c^2 = a^2 + b^2 - ab$ (the Law of Cosines), then

$$(b+c)^{2} + (a+c)^{2} - (a+c)(b+c) - (a+b)^{2} = bc + ac + c^{2} - 3ab = bc + ac + a^{2} + b^{2} - 4ab$$
$$= bc + ac - 2ab + (a-b)^{2}.$$

But $c^2 = a^2 + b^2 - ab \ge ab$, $(b+c)^2 \ge 4ab$; whence $(b+c)^2 c^2 \ge 4a^2b^2$ i.e. $bc + ac \ge 2ab$, and thus $(bc + ac - 2ab) + (a-b)^2 > 0$.

This completes the proof.

Also solved by Ioan Viorel Codreanu, Satulung, Maramure, Romania; Daniel Lasaosa, Universidad Pública de Navarra, Spain; AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia.