S177. Prove that in any acute triangle ABC,

$$\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} \ge \frac{5R + 2r}{4R}.$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Arkady Alt, San Jose, California, USA

Since $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$, the inequality can be rewritten as

$$\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} - 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \ge \frac{5}{4}.$$
 (A)

Inequality (A) is an immediate corollary from more general inequality represented by the following theorem

Theorem. Let k be any real number such that $k \geq k_*$ where

$$k_* = \frac{4}{2\sqrt{2-\sqrt{2}}-\sqrt{2}+3} \approx 1.2835.$$

Then for any $\alpha, \beta, \gamma \in \left(0, \frac{\pi}{4}\right]$, such that $\alpha + \beta + \gamma = \frac{\pi}{2}$ the following inequality holds

$$\sin \alpha + \sin \beta + \sin \gamma - k \sin \alpha \sin \beta \sin \gamma \ge \frac{12 - k}{8}.$$
 (M)

Proof. Assuming, due symmetry, that $\alpha \leq \beta \leq \gamma$ and, denoting $\varphi = \alpha + \beta$ we obtain $\gamma = \frac{\pi}{2} - \varphi$, $\beta = \varphi - \alpha$, where the new variables α and φ satisfy the inequalities $0 < \alpha \leq \varphi - \alpha \leq \frac{\pi}{2} - \varphi \leq \frac{\pi}{4}$ or equivalently

$$\begin{cases}
\frac{\pi}{4} \le \varphi \le \frac{\pi}{3} \\
2\varphi - \frac{\pi}{2} \le \alpha \le \frac{\varphi}{2}
\end{cases}$$
(1)

Since

$$\sin \alpha + \sin \beta + \sin \gamma - k \sin \alpha \sin \beta \sin \gamma = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} + \sin \gamma (1 - k \sin \alpha \sin \beta)$$
$$= 2 \sin \frac{\varphi}{2} \cos \left(\frac{\varphi}{2} - \alpha\right) + \cos \varphi (1 - k \sin \alpha \sin (\varphi - \alpha))$$

then inequality (M) can be equivalently rewritten as

$$2\sin\frac{\varphi}{2}\cos\left(\frac{\varphi}{2} - \alpha\right) + \cos\varphi\left(1 - k\sin\alpha\sin\left(\varphi - \alpha\right)\right) \ge \frac{12 - k}{8} \tag{2}$$

where variables α and φ are subject to the system (1).

Let

$$h(\alpha) = 2\sin\frac{\varphi}{2}\cos\left(\frac{\varphi}{2} - \alpha\right) + \cos\varphi\left(1 - k\sin\alpha\sin\left(\varphi - \alpha\right)\right)$$

for any fixed $\varphi \in \left[\frac{\pi}{4}, \frac{\pi}{3}\right]$ and $k_* > \frac{2}{\sqrt{3}} = 1.1547$. We will prove that $h(\alpha)$ is decreasing on $\left[2\varphi - \frac{\pi}{2}, \frac{\varphi}{2}\right]$. Indeed,

$$h'(\alpha) = 2\sin\left(\frac{\varphi}{2} - \alpha\right)\left(\sin\frac{\varphi}{2} - k\cos\varphi\cos\left(\frac{\varphi}{2} - \alpha\right)\right) \le 0$$

on $\left[2\varphi - \frac{\pi}{2}, \frac{\varphi}{2}\right]$ since $\sin\left(\frac{\varphi}{2} - \alpha\right) \ge 0$, $k_* > \frac{2}{\sqrt{3}}$ and

$$\sin \frac{\varphi}{2} - k \cos \varphi \cos \left(\frac{\varphi}{2} - \alpha\right) \le \sin \frac{\varphi}{2} - k \cos \varphi \cos \frac{\varphi}{2}$$

$$\le \sin \frac{\pi}{6} - k \cos \frac{\pi}{3} \cos \frac{\pi}{6} = \frac{1}{2} - \frac{k}{2} \cdot \frac{\sqrt{3}}{2}$$

$$\le \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{k_*}{2} < \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}}$$

$$= 0.$$

Thus, $h(\alpha) \ge h\left(\frac{\varphi}{2}\right) = 2\sin\frac{\varphi}{2} + \cos\varphi\left(1 - k\sin^2\frac{\varphi}{2}\right)$ and it remains to prove the inequality

$$2\sin\frac{\varphi}{2} + \cos\varphi\left(1 - k\sin^2\frac{\varphi}{2}\right) \ge \frac{12 - k}{8}.\tag{3}$$

Let $t = \sin \frac{\varphi}{2}$ then $\sin \frac{\pi}{8} \le t \le \frac{1}{2}$ and (3) is equivalent to

$$2t + (1 - 2t^{2})(1 - kt^{2}) \ge \frac{12 - k}{8} \iff 16kt^{4} - (8k + 16)t^{2} + 16t - (4 - k) \ge 0$$
$$\iff (1 - 2t)^{2} (k(2t + 1)^{2} - 4) \ge 0$$

because $k(2t+1)^2 \ge k_* \left(2\sin\frac{\pi}{8}+1\right)^2 = 4$. Since equality in (2) occurs if and only if $\alpha = \frac{\varphi}{2}$ and $\varphi = \frac{\pi}{3} \iff \alpha = \frac{\pi}{6}$ and $\varphi = \frac{\pi}{3}$ then in (M) equality occurs if and only if $\alpha = \beta = \gamma = \frac{\pi}{6}$. In particular for k = 2 and $k = \frac{4}{3}$, replacing (α, β, γ) in (M) with $\left(\frac{A}{2}, \frac{B}{2}, \frac{C}{2}\right)$, for any acute triangle ABC we, respectively, obtain inequality (A) and inequality

$$\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} - \frac{4}{3}\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \ge \frac{4}{3}.$$
 (G)

(The last one is an inequality due to J. Garfuncel, given in [RAGI] without proof in a private communication.)

Remark.

The original inequality immediately follows from (G). Indeed,

$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - 2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} = \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - \frac{4}{3}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$$

$$- \frac{2}{3}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$$

$$\geq \frac{4}{3} - \frac{2}{3}\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} \geq \frac{4}{3} - \frac{2}{3} \cdot \frac{1}{8}$$

$$= \frac{5}{4}.$$

[RAGI]. Mitrinović D.S., Pečarić J. E., Volenec V. Recent Advances, *Geometric Inequality*, p.269, inequality 5.10.

Second solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Assume wlog that $C \geq B \geq A$, and denote $\frac{A+B}{4} = \alpha$, $\frac{B-A}{4} = \delta$. It is well known that $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$, or the proposed problem is equivalent to showing that

$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - 2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2} \ge \frac{5}{4}.$$

Assume that C is known such that the LHS is minimum, or for that value of C, define

$$f(x,y) = \sin x + \sin y - 2\sin x \sin y \sin \frac{C}{2},$$

where $x + y = \frac{A+B}{2} = 90^{\circ} - \frac{C}{2}$ is fixed. Now,

$$\begin{split} f\left(\frac{A}{2},\frac{B}{2}\right) - f(\alpha,\alpha) &= f(\alpha-\delta,\alpha+\delta) - f(\alpha,\alpha) = 2\sin\alpha(\cos\delta-1) + 2\sin^2\delta\sin\frac{C}{2} = \\ &= 4\sin^2\frac{\delta}{2}\left(2\cos^2\frac{\delta}{2}\sin\frac{C}{2} - \sin\alpha\right). \end{split}$$

Now, if $\delta>0$, and since $\delta=\frac{B-A}{4}<\frac{B}{4}<45^\circ$, we have $\sin^2\frac{\delta}{2}>0$, $2\cos^2\frac{\delta}{2}>2\cos^2(45^\circ)>1$. Moreover, $\frac{C}{2}>\frac{A+B}{4}$, since equality would only hold iff A=B=C, which is not true because $\delta>0$. Thus, $f\left(\frac{A}{2},\frac{B}{2}\right)\geq f\left(\frac{A+B}{4},\frac{A+B}{4}\right)$, with equality iff $A=B=90^\circ-\frac{C}{2}$. It therefore suffices to show that, for all $90^\circ>C\geq 60^\circ$, we have

$$2u + (1 - 2u^2) - 2u^2(1 - 2u^2) \ge \frac{5}{4}.$$

where we have defined $u=\sin\left(45^\circ-\frac{C}{4}\right)$, and therefore $\sin\frac{C}{2}=\cos\left(2\left(45^\circ-\frac{C}{4}\right)\right)=1-2u^2$. After some algebra, this last inequality is equivalent to $(2u-1)^2(4u^2+8u+1)\geq 0$. Since $90^\circ>C\geq 60^\circ$, we have $\frac{45^\circ}{2}<45^\circ-\frac{C}{4}\leq 30^\circ$, or u>0. The conclusion follows, equality holds iff $u=\frac{1}{2}$, ie iff $45^\circ-\frac{C}{4}=30^\circ$, or $C=60^\circ$. We conclude that equality holds iff ABC is equilateral.

Third solution by Neculai Stanciu, George Emil Palade, Romania