S154. Let $k \geq 2$ be an integer and let n_1, \ldots, n_k be positive integers. Prove that there are no rational numbers $x_1, \ldots, x_k, y_1, \ldots, y_k$ such that

$$(x_1 + y_1\sqrt{2})^{2n_1} + \dots + (x_k + y_k\sqrt{2})^{2n_k} = 5 + 4\sqrt{2}.$$

Proposed by Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca, Romania

First solution by Neacsu Adrian, Pitesti, Romania

We note that if $x, y \in Q$ such that

$$[1]: x + y\sqrt{2} = 5 + 4\sqrt{2}$$

then x=5 and y=4. Indeed, if $y\neq 4$, $\sqrt{2}=\frac{5-x}{y-4}\in Q$, contradiction. So y=4 and from [1], x=5. The given relation can be written as

$$\sum_{i=1}^{k} \left\{ {2n_i \choose 0} x_i^{2n_i} + {2n_i \choose 2} x_i^{2n_i - 2} 2y_i^2 + \cdots \right\}$$

$$+ \sum_{i=1}^{k} \left\{ {2n_i \choose 1} x_i^{2n_i - 1} y_i + {2n_i \choose 3} x_i^{2n_i - 3} 2y_i^3 + \cdots \right\} \sqrt{2}$$

$$= 5 + 4\sqrt{2}, X + Y\sqrt{2} = 5 + 4\sqrt{2}.$$

From the above observation it follows X = 5, Y = 4 and: $X - Y\sqrt{2} = 5 - 4\sqrt{2}$, that can be written back as

$$\sum_{i=1}^{k} (x_i - y_i \sqrt{2})^{2n_i} = 5 - 4\sqrt{2}.$$

The left-hand side is a positive number and right-hand side is a negative one, contradiction.

Second solution by Arkady Alt, San Jose, California, USA

Consider the set $\mathbb{Q}\left(\sqrt{2}\right) = \left\{x + y\sqrt{2} : x, y \in \mathbb{Q}\right\}$ which is a quadratic extension of \mathbb{Q}) which is closed with respect to addition and multiplication. Note that the numbers 1 and $\sqrt{2}$ are linearly independent since $x + y\sqrt{2} = 0 \iff y = 0 \implies x = 0$, because otherwise $\sqrt{2} = -\frac{x}{y} \in \mathbb{Q}$. Therefore if $x_1, y_1, x_2, y_2 \in \mathbb{Q}$ then $x_1 + y_1\sqrt{2} = x_2 + y_2\sqrt{2} \iff \begin{cases} x_1 = x_2 \\ y_1 = y_2 \end{cases}$.

For any number $z = x + y\sqrt{2}$ from $\mathbb{Q}(\sqrt{2})$ we consider the number $\overline{z} = x - y\sqrt{2}$ which we call the conjugate of z. For conjugation, due to linear independency, 1 and $\sqrt{2}$ satisfy the properties

1.
$$\overline{u+v} = \overline{u} + \overline{v}, u, v \in \mathbb{Q}(\sqrt{2});$$

2.
$$\overline{u \cdot v} = \overline{u} \cdot \overline{v}, u, v \in \mathbb{Q}(\sqrt{2})$$
.

Since $(x + y\sqrt{2})^n = a_n(x, y) + b_n(x, y)\sqrt{2}$ for any positive integer n, where $a_n(x, y)$ and $b_n(x, y)$ are polynomials with integer coefficients then for any rational x, y numbers $a_n = a_n(x, y)$ and

 $b_{n}=b_{n}\left(x,y\right) \ \ \text{are rational as well.}$ Then

$$\left(x - y\sqrt{2}\right)^n = \overline{\left(x + y\sqrt{2}\right)^n} = \overline{a_n(x,y) + b_n(x,y)\sqrt{2}} = a_n(x,y) - b_n(x,y)\sqrt{2}.$$

Hence, $(x_1 - y_1\sqrt{2})^{2n_1} + ... + (x_k - y_k\sqrt{2})^{2n_k} = 5 - 4\sqrt{2}$ and, therefore,

$$\sum_{i=1}^{k} \left(x_i + y_i \sqrt{2} \right)^{2n_i} \sum_{i=1}^{k} \left(x_i - y_i \sqrt{2} \right)^{2n_i} = \left(5 + 4\sqrt{2} \right) \left(5 - 4\sqrt{2} \right) = 25 - 32 = -7,$$

which is a contradiction because the left hand side of equality is obviously positive.

Also solved by Daniel Lasaosa, Universidad Pública de Navarra, Spain.