S123. Prove that in any triangle with sidelenghts a, b, ¢ the following inequality holds:
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Proposed by Cezar Lupu, University of Bucharest, Romania

First solution by Arkady Alt, San Jose, California, USA

a+b+c. . . s
Let s = ———— is semiperimeter of a triangle with sidelengths a, b, c.Then,due

to triangle inequalites a, b, c < s and setting r :=s—a,y:=s—0b, 2 :=s—c we
obtain
a=y+z,b=z4+z,c=x+4+vy,s=x+y+ 2z, where z,y,2z > 0.

Thus, original inequality becomes
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(z+y+2)P° —d@+y+2) (y+yz+z220) +92yz > 0 —

Y x(x—y)(x—z) >0 (Schure Inequality).
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Second solution by Gheorghe Pupazan, Chisinau, Republic of Moldova

We make the well-known substitution a = x+y,b =y + 2z and ¢ = z 4+ =, where
x,y,2z > 0. The inequality becomes equivalent to:

2x+y+z2z zzH+2y+z x+y42z Szyz
+ + 2
y+z z+x r+y (x+y)(y+2)(z+x)

After multiplying both sides by (z + y)(y + 2)(z + x), the inequality becomes
equivalent with:
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which is just Schur’s inequality.
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