Olympiad problems

O259. Solve in integers the equation $x^5 + 15xy + y^5 = 1$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Arkady Alt , San Jose , California, USA

Due to symmetry of equation we may assume that $x \geq y$.

Since in the case x = y we get equation $2x^5 + 15x^2 = 1$ which obviously have no solution in integers then further we also can assume x > y.

Consider three cases.

1. xy = 0. Then we get solution (x, y) = (1, 0);

2. xy < 0. Then due to supposition x > y we have x > 0, y < 0 and by replacing y in equation with -y we obtain equation $x^5 - 15xy - y^5 = 1$, where $x, y \ge 1$

(because now x, y are positive integers).

Since
$$x^5 - y^5 = 15xy + 1 > 0$$
 then $x - y > 0 \iff x \ge y + 1$ yields $x^5 - y^5 = (x - y)(x^4 + y^4 + xy(x^2 + y^2) + x^2y^2) \ge 5(x - y)x^2y^2$ and $xy \ge 2$. Therefore, $15xy + 1 \ge 5(x - y)x^2y^2 \iff 3xy + \frac{1}{3} \ge (x - y)x^2y^2 \implies 3 \ge (x - y)xy \iff \frac{3}{xy} \ge x - y$ and since $1 \le x - y$ then $x - y = 1$ and $xy \le 3$.

But system
$$\begin{cases} x-y=1 \\ xy=3 \end{cases}$$
 have no integer solutions. Then remains system $\begin{cases} x-y=1 \\ xy=2 \end{cases}$

which give us solution x = 2, y = 1. Since (x, y) = (2, 1) satisfy $x^5 - 15xy - y^5 = 1$ then (x, y) = (2, -1), (-1, 2) are solutions of original equation in the case xy < 0.

3. Let xy > 0. It is possible if x, y < 0. Then by replacing (x, y) in original equation with (-x, -y) we obtain equation $x^5 + y^5 = 15xy - 1$ where $1 \le x < y$.

Hence,
$$xy \ge 2$$
 and $x + y \ge 2x + 1 \ge 3$. Since $x^5 + y^5 = (x + y) (x^4 + y^4 - xy (x^2 + y^2) + x^2y^2) = (x + y) ((xy + x^2 + y^2) (x - y)^2 + x^2y^2) \ge (x + y) ((xy + x^2 + y^2) + x^2y^2) \ge (x + y) (3xy + x^2y^2) = (x + y) (3 + xy) xy \ge 3 \cdot (3 + 2) xy = 15xy$ then $15xy - 1 = x^5 + y^5 \ge 15xy$, that is the contradiction. Thus, all solutions of original equation are $(x, y) = (1, 0), (0, 1), (2, -1), (-1, 2)$.

Also solved by Li Zhou, Polk State College, USA; George Batzolis, Mandoulides High School, Thessaloniki, Greece; Daniel Lasaosa, Universidad Pública de Navarra, Spain; Semchankau Aliaksei, Minsk, Belarus; AN-anduud Problem Solving Group, Ulaanbaatar, Mongolia; Antonio Trusiani, Università di Roma "Tor Vergata", Roma, Italy.