J141. Let a, b, c be the side lengths of a triangle. Prove that

$$0 \le \frac{a-b}{b+c} + \frac{b-c}{c+a} + \frac{c-a}{a+b} < 1.$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Dorin Andrica, "Babes-Bolyai" University, Romania

First solution by the authors. We can write

$$\sum_{cyc} \frac{a-b}{b+c} = \sum_{cyc} \frac{a+c}{b+c} - 3 = E - 3,$$

where

$$E = \frac{a+c}{b+c} + \frac{b+a}{b+c} + \frac{c+b}{b+c}.$$

For the right-hand side inequality observe that in any triangle we have $b+c>\frac{1}{2}(a+b+c),\ c+a>\frac{1}{2}(a+b+c),$ and $a+b>\frac{1}{2}(a+b+c).$ It follows

$$E < \frac{2(a+c+b+a+c+b)}{a+b+c} = 4.$$

For the left-hand side inequality we use the Cauchy-Schwarz inequality and get

$$E = \sum_{cuc} \frac{a+c}{b+c} = \sum_{cuc} \frac{(a+c)^2}{(a+c)(b+c)} \ge \frac{(\sum_{cyc} (a+c))^2}{\sum_{cyc} (a+c)(b+c)} = \frac{4(a+b+c)^2}{a^2+b^2+c^2+3(ab+bc+ca)}.$$

The last fraction is greater than 3, since we have $a^2 + b^2 + c^2 \ge ab + bc + ca$. The equality holds if and only if the triangle is equilateral.

Second solution by Arkady Alt, San Jose, California, USA Since

$$\sum_{cyc} (a-b) (a+b) (c+a) = \sum_{cyc} (a-b) (a^2 + ab + bc + ca)$$

$$= \sum_{cyc} (a-b) a^2 + (ab + bc + ca) \sum_{cyc} (a-b)$$

$$= \sum_{cyc} (a-b) a^2 = a^3 + b^3 + c^3 - a^2b - b^2c - c^2a$$

$$= \frac{1}{3} \sum_{cyc} (2a^3 + b^3 - 3a^2b) = \frac{1}{3} \sum_{cyc} (a-b)^2 (2a+b)$$

then

$$\sum_{cyc} \frac{a-b}{b+c} = \frac{a^3 + b^3 + c^3 - a^2b - b^2c - c^2a}{(a+b)(b+c)(c+a)} \ge 0.$$

It remains to prove that

$$\sum_{cuc} \frac{a-b}{b+c} < 1 \iff a^3 + b^3 + c^3 - a^2b - b^2c - c^2a < (a+b)(b+c)(c+a).$$

We have

$$(a+b)(b+c)(c+a) - a^3 - b^3 - c^3 + a^2b + b^2c + c^2a$$
$$= 2abc + a^2b + b^2c + c^2a + \sum_{cuc} a^2(b+c-a) > 0$$

because a, b, c satisfy the inequalities b + c - a > 0, c + a - b > 0, a + b - c > 0.

Third solution by Michel Bataille, France

The central expression rewrites as $\frac{N}{D}$ with

$$N = (a-b)a^2 + (b-c)b^2 + (c-a)c^2$$
 and $D = (a+b)(b+c)(c+a)$.

Assume without loss of generality that $a = \max\{a, b, c\}$. Then,

$$N = (a-b)a^2 + (b-c)b^2 + (c-b)c^2 + (b-a)c^2 = (a-b)(a-c)(a+c) + (b-c)^2(b+c) \ge 0$$

and since D > 0, we obtain $\frac{N}{D} \ge 0$.

It is easily checked that

$$D - N = a^{2}(b + c - a) + b^{2}(c + a - b) + c^{2}(a + b - c) + a^{2}b + b^{2}c + c^{2}a + 2abc,$$

hence D-N>0 (since a,b,c are the side lengths of a triangle, we have a< b+c, b< c+a and c< a+b). Thus, $\frac{N}{D}<1$ and we conclude that $0\leq \frac{N}{D}<1$, as required.

Also solved by G. C. Greubel, Newport News, USA; Ercole Suppa, Teramo, Italy; Daniel Lasaosa, Universidad Pública de Navarra, Spain.