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because A < 1. Thus,

Arkady Alt

W28. (Solution by the proposer.) The roots of characteristic polynomial
equation z2 — = + % =0 are a = l—j—z and 8 = 17—1', and taking into account
the initial values of the sequence, it follows that x, = o™ + 8", so the
proposed series reads may be written as
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The generating function for (zs),q is F Z Tpx" ra—y

Funtion F'(z) is analytic for z E C with |z| < \/_
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To find th ed se = —_— nsider the
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function = - F'(x) = 52—:6%’ and its integral
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Therefore, n2:1 e T G(1) — G(0) =7 -2 (1+2tan™'(1)) =

Second solution. Note that
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Let S (z) nz—:0 n4+2 , where z € (0,1). Then
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and S’ (z) =z Y a2 cos R where series Y cos Taz” converges absolutely
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Noting that
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(since |1 z| < 1) and
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Since Y on S(l) 1 and
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then
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W29. (Solution by the proposer.) Since z +y + z = 1, the given
inequality may be written as

1
E _wtAl <3x/§.
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Now, using that z* + 1 = (z + 1)(z? — x + 1), the inequality becomes
Z Vz + 1 < 3V/2. Finally, since function f(z) = V& + 1 is concave because
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' (x) = 1 T 12 CERE < 0, by Jensen’s inequality, we have
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