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Let a > b be positive real numbers and let n be a positive integer. Prove that
(an+1 _ bn+1)n—1 n . e
(a" —b")" (n+1)> a-b
where e is the Euler number.
Solution by Arkady Alt , San Jose ,California, USA.
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Lemma 1.

If z > 0then (p.),. is Log-Concave sequence, namely for any n > 2 holds inequality
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Proof.
If t = 1thenp, = 1,n € Nand inequality (2) obviously holds. Let r # 1. Since
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where latter inequality is right because by AM-GM we have
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Lemma 2.

For any positive integer n > 2 and any positive real r holds inequality
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Proof.
Noting that (3)< p™;1 > p? we will prove latter inequality by Math Induction.

1.Base of Math Induction.
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Let n = 2 then p’;] > p? becomes p; > p3 <= Lerer? o U*D7 (t-1)>>0.
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2. Step of Math Induction.
Assume that for any n > 2 holds inequality p7;! > p. Since (Lemma 1) p..2 +pa = p2,
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