1036. Proposed by George Apostolopoulos, Messolonghi, Greece.

Let a,b,c be positive real numbers such that abc = 1. Prove that

$$\left(a^3(a+1)+b^3(b+1)+c^3(c+1)\right)\cdot\frac{(a^3+3)(b^3+3)(c^3+3)}{(a+1)(b+1)(c+1)}\geq 48.$$

Solution by Arkady Alt, San Jose, California, USA.

Note that for any positive x holds inequality

$$(1) \qquad \frac{x^3+3}{x+1} \ge \frac{x+3}{2}.$$

Indeed, (1)
$$\Leftrightarrow 2(x^3+3)-(x+1)(x+3) \ge 0 \Leftrightarrow (2x+3)(x-1)^2 \ge 0$$
.

Since
$$\frac{(a^3+3)(b^3+3)(c^3+3)}{(a+1)(b+1)(c+1)} \ge \frac{(a+3)(b+3)(c+3)}{8}$$
 remains to prove inequality

(2)
$$\sum_{cyc} a^3(a+1) \cdot \prod_{cyc} \frac{a+3}{2} \ge 48.$$

By AM-GM we have
$$\sum_{cvc} a^3(a+1) = \sum_{cvc} a^4 + \sum_{cvc} a^3 \ge 3\sqrt[3]{a^4b^4c^4} + 3\sqrt[3]{a^3b^3c^3} = 6$$

and
$$\prod_{cyc} \frac{a+3}{2} = \frac{1}{8} \prod_{cyc} (a+3) \ge \frac{1}{8} \prod_{cyc} 4 \sqrt[4]{a \cdot 1 \cdot 1 \cdot 1} = 8 \sqrt[4]{abc} = 8.$$

Hence,
$$\sum_{cyc} a^3(a+1) \cdot \prod_{cyc} \frac{a+3}{2} \ge 6 \cdot 8 = 48.$$

1037. Proposed by George Apostolopoulos, Messolonghi, Greece.

Let P be a point inside the triangle ABC and let D, E, F be the projections of P on the sides BC, CA, and AB, respectively. Prove that

$$\frac{PA + PB + PC}{(EF \cdot FD \cdot DE)^{1/3}} \ge 2\sqrt{3}$$

Solution by Arkady Alt , San Jose , California, USA.

Let $R_a := PA$, $R_b := PB$, $R_c := PC$ and $a_p := EF$, $b_p := FD$, $c_p := DE$

(that is a_p, b_p, c_p are sidelengths of pedal triangle of point P). Then original inequality in the new notation becomes

(1)
$$\frac{R_a + R_b + R_c}{(a_n b_n c_n)^{1/3}} \ge 2\sqrt{3}$$

(1)

Since quadrilateral FAEP is cyclic (because $PF \perp AB$ and $PE \perp AC$) and R_a is diameter of circumcircle of quadrilateral FAEP

then $\frac{a_p}{R_a} = \sin A = \frac{a}{2R}$ and, similarly, $\frac{b_p}{R_b} = \sin B = \frac{b}{2R}$, $\frac{c_p}{R_c} = \sin C = \frac{c}{2R}$ and inequality

can be rewritten as
$$\frac{R_a + R_b + R_c}{\left(\frac{aR_a}{2R} \cdot \frac{bR_b}{2R} \cdot \frac{cR_c}{2R}\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3} \iff \frac{2R(R_a + R_b + R_c)}{\left(aR_a \cdot bR_b \cdot cR_c\right)^{1/3}} \ge 2\sqrt{3}$$

$$\frac{R(R_a + R_b + R_c)}{\sqrt[3]{R_a R_b R_c}} \ge \sqrt{3} \sqrt[3]{abc} \iff \sum_{cyc} \sqrt[3]{\frac{R_a^2}{R_b R_c}} \ge \frac{\sqrt{3}}{R} \sqrt[3]{abc} \text{ or } \sum_{cyc} \sqrt[3]{\frac{R_a^2}{R_b R_c}} \ge \sqrt{3} \sqrt[3]{\frac{Sr}{R^2}}.$$

Or, inequality (1) can be rewritten as $\frac{R_a + R_b + R_c}{\left(R_a \sin A \cdot R_b \sin B \cdot R_c \sin C\right)^{1/3}} \ge 2\sqrt{3} \iff$

$$\frac{R_a + R_b + R_c}{(R_a R_b R_c)^{1/3}} \ge 2\sqrt{3} \left(\sin A \sin B \cdot \sin C\right)^{1/3}.$$

Since
$$\frac{R_a + R_b + R_c}{(R_a R_b R_c)^{1/3}} \ge 3$$
 suffice to prove that $3 \ge 2\sqrt{3} (\sin A \sin B \cdot \sin C)^{1/3} \Leftrightarrow \frac{\sqrt{3}}{2} \ge (\sin A \sin B \cdot \sin C)^{1/3}$.

We have $\frac{\sin A + \sin B + \sin C}{3} \le \frac{\sqrt{3}}{2}$ (because for $\sin x$ which is concave down on $[0,\pi]$

by Jensen's Inequality holds
$$\frac{\sin A + \sin B + \sin C}{3} \le \sin \frac{A + B + C}{3} = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
) and by AM-GM $(\sin A \sin B \cdot \sin C)^{1/3} \le \frac{\sin A + \sin B + \sin C}{3}$.

(Another way to prove inequality $\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$.

First note that for any $x,y \in [0,\pi]$ holds inequality $\sin x + \sin y \le 2\sin\frac{x+y}{2}$.

Indeed,
$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2} \le 2\sin\frac{x+y}{2}$$
 because $\frac{x+y}{2} \in [0,\pi]$ and $\frac{x-y}{2} \in [-\pi/2,\pi/2]$.

Using inequality $\sin x + \sin y \le 2 \sin \frac{x+y}{2}$ we obtain

$$\sin A + \sin B + \sin C + \sin \frac{\pi}{3} \le 2\sin \frac{A+B}{2} + 2\sin \frac{C + \frac{\pi}{3}}{2} \le 4\sin \frac{A+B}{2} + \frac{C + \frac{\pi}{3}}{2} = 4\sin \frac{\pi + \frac{\pi}{3}}{4} = 4 \cdot \sin \frac{\pi}{3} = 2\sqrt{3} \implies \sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}.$$

1038.Proposed by D. M. Bătinetų-Giurgiu, Matei Basarab National College, Bucharest,

Romania and Neculai Stanciu, George Emil Palade Secondary School, Buzău, Romania.

Let m be a nonnegative real number and x,y be positive real numbers. Prove that, for any triangle ABC with side lengths a,b,c where [ABC] denotes the area of triangle,

$$\frac{a^{m+2}}{(xb+vc)^m} + \frac{b^{m+2}}{(xc+va)^m} + \frac{c^{m+2}}{(xa+vb)^m} \ge \frac{4\sqrt{3}}{(x+v)^m} \cdot [ABC].$$

Solution by Arkady Alt , San Jose , California, USA.

Let
$$u := \frac{xb + yc}{x + y}$$
, $v := \frac{xc + ya}{x + y}$, $w := \frac{xa + yb}{x + y}$ and $I_m := \frac{a^{m+2}}{u^m} + \frac{b^{m+2}}{v^m} + \frac{c^{m+2}}{w^m}$
then $\sum_{CV} \frac{a^{m+2}}{(xb + yc)^m} \ge \frac{4\sqrt{3}}{(x + y)^m} \cdot [ABC] \iff I_m \ge 4\sqrt{3} \cdot [ABC]$.

We will prove that $I_{m+1} \ge I_m$ for any $m \in \mathbb{N} \cup \{0\}$.

Noting that $I_0 = a^2 + b^2 + c^2$ and using inequality $\frac{\alpha^2}{\beta} \ge 2\alpha - \beta, \alpha, \beta > 0$ we obtain

$$I_{1} = \sum_{cyc} \frac{a^{3}}{u} = \sum_{cyc} a \cdot \frac{a^{2}}{u} \ge \sum_{cyc} a(2a - u) = I_{0} + \sum_{cyc} a(a - u) = I_{0} + \sum_{cyc} a(a - u) = I_{0} + \sum_{cyc} \left(a^{2} - \frac{a(xb + yc)}{x + y}\right) = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} - \sum_{cyc} \frac{a(xb + yc)}{x + y} = I_{0} + a^{2} + b^{2} + c^{2} + a^{2} +$$

$$I_0 + (a^2 + b^2 + c^2 - ab - bc - ca) \ge I_0.$$

Taking inequality $I_1 \geq I_0$ as base of Math Induction and assuming for any $m \in \mathbb{N}$

that $I_m \ge I_{m-1}$ we will prove that $I_{m+1} \ge I_m$.

We have
$$I_{m+1} = \sum_{cyc} \frac{a^{m+3}}{u^{m+1}} = \sum_{cyc} \frac{a^{m+1}}{u^m} \cdot \frac{a^2}{u} \ge \sum_{cyc} \frac{a^{m+1}}{u^m} (2a - u) = I_m + \sum_{cyc} \left(\frac{a^{m+2}}{u^m} - \frac{a^{m+1}}{u^{m-1}} \right) = I_m + I_m$$

$$I_m + (I_m - I_{m-1}) \geq I_m$$
.

Since $(I_m)_{m\geq 0}$ is increasing sequence then $I_m\geq I_0=a^2+b^2+c^2$ and

(1) $a^2 + b^2 + c^2 \ge 4\sqrt{3} \cdot [ABC]$ (Weitzenböck's inequality)

we obtain $I_m \ge 4\sqrt{3} \cdot [ABC]$.

(Or, direct proof of inequality $a^2 + b^2 + c^2 \ge 4\sqrt{3} \cdot [ABC]$:

Let x := s - a, y := s - b, z := s - c where s is semiperimeter and let p := xy + yz + zx,

q:=xyz. Also, assume (due to homogeneity) that s:=1. Then $a^2+b^2+c^2=2(1-p)$,

 $[ABC] = \sqrt{q}$ and inequality (1) become $1 - p \ge 2\sqrt{3} \cdot \sqrt{q}$.

Since
$$p^2 = (xy + yz + zx)^2 \ge 3xyz(x + y + z) = 3q$$
 and

$$1 = (x + y + z)^{2} \ge 3(xy + yz + zx) = p$$

we obtain $1 - p - 2\sqrt{3} \cdot \sqrt{q} = 1 - 3p + 2(p - \sqrt{3q}) \ge 0$).