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Abstract

This book is a translated into English extended and signi�cantly added
version of author�s brochures "Guidelines for teachers of mathematics to
prepare students for mathematical competitions" published at 1988 in
Odessa.

Preface

This book is a translation into English of my brochures "guidelines for teach-
ers of mathematics to prepare students for mathematical competitions" pub-
lished 1988 year in Odessa.
More precisely it is corrected and signi�cantly added version of this brochure.

In comparison with the �rst original edition with solutions only to 20 problems
from 112 problems represented there this new edition signi�cantly replenished
with new problems (around 180 problems).
And now all problems are accompanied by solutions which at di¤erent times

done by the author of this book (sometimes multivariants and with the analysis
and generalizations). Also, unlike the previous edition, all problems are grouped
into the corresponding sections of mathematics.

Part I

Methodology Introduction
It makes no sense to repeat what has already been said about the usefulness
and expediency of mathematical olympiads of di¤erent levels.Therefore, let us
dwell on the issues that naturally arise in connection with the Olympiads, in
particular, with olympiads of high level, -issues of preparation to Mathematical
Competitions
The main question: Is it necessary such preparation?
It�s not a secret that students who are able to solve the problems o¤ered at

these Olympiads, su¢ ciently gifted mathematically, have more advanced math-
ematical techniques and a number
of useful qualities, including the ability to self-organize and independent

work.That is, and so good.?
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But there is a fact of very serious preparation by level and by time, for
participation in international mathematical Olympiads. Is known signi�cant
advantages of participants in the Olympiads, students of schools and classes, in
which mathematics is taught in a larger volume and with greater depth.
Finally, the more capable a student is, the more important and di¢ cult is to

ensure the growing process of improving and systematizing mathematical edu-
cation, which should include not only the knowledge of concrete facts, but what
is more important, the ways of their formation (with the need to include their
proofs), intensive practical work with solving non-standard and nonaddressed
problems, that is everything that forming a culture of mathematical thinking.
(Culture of mathematical thinking:
-Discipline of thinking, algorithmic thinking, observation, ability to analy-

sis, generalizations, the ability to build mathematical models, to choose a con-
venient language description of the problem situation .... (the list can be con-
tinued)).
The existing system of teaching mathematics in no way contributes to readi-

ness of the student to solve unconventional, nonstandard problems of the Olympiad
character. If all this happens, it is not thanks to this system, but contrary to
it.
The main reason is that the goal of traditional school education is a certain

an admissible minimum of knowledge, limited by the amount of hours, the
program, its quantitative and qualitative composition and certainly the teaching
methodology based mainly on the memorization of facts and means for execution
of algorithmized instructions aimed at solving exclusively typical problems.
If within the framework of this system the student faithfully complies with

all the requirements, and limited by this, then his success isn�t su¢ ciently guar-
anteed. But this is not the main thing.
The main thing is that the creative attitude to mathematics will be hope-

lessly lost. And if this does not happen in some cases, it is only thanks to the
personality of the student and the personality of the teacher that have fallen in
the state of resonance.
It�s no secret that the assurances of the organizers of the Olympiads that

problems do not go beyond of school curriculum to put it mildly, distort the
real state of things.
That is, formally they do not sin against the truth, at least so, how much, say,

as the editor of the book, which write in the annotation, that for its reading
not necessary to have no preliminary information, except for the developed
mathematical thinking.
But the latter is already a result of a preparation of very long and intencive

and varied, the result of systematic training aimed at developing thinking non-
standard, but logically disciplined.
The essence of this statement will become clear after the complete list of

what is know the ordinary student (a student which is in full compliance with
the program).
Even in class programs with in-depth study of mathematics, much of this in

the following list is missing.
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So, what does not know (or know insu¢ ciently) a ordinary school student :
1. Algebraic and analytic technic.
2. Method of mathematical induction at the level of well-developed technique

use it in di¤erent and, preferably, non-standard situations;
3. The theory of divisibility is, in a volume di¤erent from residual, vague

representations of a high-school student about knowledge, which was casually
received in middle school

4. The algebra of polynomials including the theory of divisibility of polyno-
mials

5. Basic classic inequalities and their applications.
6. Integer and fractional parts. Properties and applications.
7. Technique of solving systems of inequalities in integer numbers and

e¤ective representation of integer multidimention domains;
8. Technique of summation, including summation by multidimention do-

mains.
9. Sequences -di¤erent ways of their de�nition (including recursive de�ni-

tion and generating functions) and elementary methods of solving certain classes
of recurrence relations and their applications in the theory of divisibility, sum-
mation, combinatorics and so on.

10. The Dirichlet principle.
11. Method of invariants.
12. Techniques of elementary (without derivatives) solving extremal prob-

lems, especially with many variables.
13. Solving equations in two or more unknowns in integers and especially

in non-negative integers.
14. Sequence analysis (boundedness, monotonicity, limit theory, including

an theoretical and practical basis, and basic limits). .
To this list it is necessary to add the lack of the ability to solve non-standard,

nonaddressed problems. An unconventional, unexpected problem should be
classi�ed, understood, reformulated,
simpli�ed, immersed in a more general problem, or treated by special cases

and identi�ed the main theoretical tools needed to solve it. The usual work of a
student is simple. Here is a chapter, here is a problem to this chapter. Search,
recognition work is minimal and the emphasis is exclusively on the robustness of
standard algorithms, that is, the minimum problematic level which is the only
truly developing thinking factor.
And if thinking does not develop, then it degrades and even ideal diligence

can not be a compensation for this loss, accompanying such approach to math
education. Thus, a consequtive change of topics, not backed by "no-address"
problems does not allow you to achieve the desired e¤ect.
That is, it is necessary that in each topic there are problems that can be

solved by using some a previously unknown combination of formally known
theoretical propositions from the preceding material.
A participant in the Olympiad needs some psychological qualities that also

require training and preparation, either special or spontaneous, accompanying
the solution of non-standard problemss in conditions of limited time.
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This ability to quickly and deeply focus on a speci�c problem, quickly relax
and switch to another task from any previous emotional state depending on luck
or failure.
Required su¢ ciently rich associative thinking and trained memory, allowing

to carry out the associative search for necessary means to solve the problem.
And most importantly, to learn to "misunderstand", that is, to face a prob-

lem in which there is nothing to grab on, there is no (at �rst impression) ready-
made approaches to its solution, calmly analyze it to look for something familiar
and similar to what you know, consider special cases (reduction), generalize(
induction), investigate the problem in limiting cases, introduce additional con-
ditions that simplify the situation, accumulate experimental material.
For a mathematician, a di¢ cult problems is to take height, to overcome

not only intellectual barrier but also complexes, fears. Thus, are important the
methodical settings of the type: "How to solve the problem?"; psychological
attitudes: reaction to the shock of "misunderstanding," the creation of com-
fortable zones, the ability to relax, adjust to the problems, focus, quickly and
deeply dive into it, that is requirements for the student�s psychological status.
But the psychological and methodological qualities can only be developed

by a large amount of work to solve non-standard problems, with the subsequent
analysis of methodological, psychological and
especially technical and ideological aspects, with the formation of generaliz-

ing settings, which is also the goal of special training for students.
It often happens that children who are capable of creative work are not able

to work in a sporting situation, which of course a¤ects their "sports" results,
but does not detract from their ability to mathematical creativity, which is by
essence isn�t a sports match.
However, as in other areas of human activity, people often bring sports

excitement in mathematic, turning it into a competition of minds. By itself it
is not a negative quality, but rather useful, developing
motive, under condition that the mathematics by itself is not reducible to

one more kind of sports competition.
It should not be forgotten that the Math Olympiad is not an aim in itself, but

a training ground on which many qualities necessary for the future researcher
are being perfected, such as perseverance,
will, technique, knowledge, skills, reaction to practical situations, thinking.
The list of problems given in this book does not in any way pretend to be

complete, but it is quite representative for such sections of school mathematics
as arithmetic, algebra and analysis.
The absence of geometric problems proper is caused by the desire to restore

the balance in the evidence base to school mathematics.
Traditionally, the concept of proof, the methods of proof, the level of rigor,

the axiomatic approach - what we call abstract thinking is basically formed in
the course of geometry, that is, a region
closer to sensory perception than algebra.
Arithmetic turns out to abandoned wasteland, somewhere in the backyard

of mathematical construction, and algebra is reduced to a set of formulas and
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rules that need to be remembered and applied.
At the same time, an insigni�cant part of students informally accepts and

understands the level of rigor and evidence in geometry and is able to transfer
the acquired thinking technique independently
to other mathematical areas.
For the others, the geometry - not motivated and it is unclear for what sins

the punishment by jesuitically sophisticated logic and for some reason mostly
"from the opposite", resulting in a
false and unimaginable premise to the almost illusive stunt of drawing a

black rabbit from a black hat, "what was required to prove ".
The loss in the geometry of its naturalness, the departure from the exposition

of it in the school at the level of Euclid, Kiselev, Kokseter did not bring desirable
e¤ect in the plane of it�s modernization, rigor or deep understanding, since
geometry is not the object on which the axiomatic method, usually accompanied
with extreme formalism don�t bring true e¢ ciency.
This is particularly true for the introductory courses speci�c to the school.

And although historically, it was in geometry, the axiomatic method showed us
its methodological power, geometry
is not at all the only reason for its primary demonstration.
Speaking of this, I in no way deny the use of the elements of the axiomatic

method and rigorous proofs in the exposition of geometry, moreover, I consider
their use necessary and bene�cial.
I am only expressing the doubt, con�rmed by my teaching practice, in the

appropriateness and e¤ectiveness of primacy in the use of the axiomatic method
and proofs in geometry.
It is not with geometry that one has to start the introduction of mathemat-

ical formalism, which comes into con�ict with the visibility which inherent to
geometry.
Due to the structural wealth of geometry, its axiomatics are voluminous

and combinatorially saturated and, although grown by abstraction from sensory
images, nevertheless do not live well with them.
Rather, they are poorly compatible with the level of rigor and formalism of

thinking, which is the inevitable companion of the axiomatic method.
And the roots of this in the psychology of perception and thinking.
It is known that it is most di¢ cult to prove or disprove the apparently

obvious, visual:
"The sun revolves around the Earth," "The Earth is �at," "A straight line

that crosses one side of the triangle and does not pass through the vertices of
a triangle will cross exactly one of its sides."
Hence the Greeks instead of proof drawing and saying "look!".
History begins with geometry, the school copies history, although it is known

that when the path is passed, it is not the shortest and most e¤ective.
At the same time, the Peano axioms for natural numbers, the theorems in the

divisibility theory, the axioms of various algebraic structures that are essentially
a subset of geometric axiomatics
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are much simpler (combinatorial complexity), less reducible to sensory im-
ages, and therefore their use is methodologically more justi�ed.

[Advanced algebraic base assuming free possession of the symbolic transformative tech-

nique, systematic proof of all the theoretical facts that make up the qualitative and the

computational basis of what is commonly called school algebra (see items 1,2,3, ... of the

list of the above) - this should, in my opinion, precede the rest of the school mathematics,

including geometry.]

But in school, these topics are taboo. Su¤ers from such a one-sidedness
all math subjects algebra, and arithmetic, and geometry, that is, all of school
mathematics and not only.
Mathematics is one, its means are universal - this is the ideological basis

on which mathematics education should be carried out. And methodological
one-sidedness is unacceptable.
And, �nally, the implantation of mathematical methodology into conscious-

ness should should be implemented by the way which is most motivated psy-
chologically.
The lack of habit of abstract reasoning at the level of the proofs of theorems

in arithmetic and algebra, in contrast to the intensive theoretical foundation in
geometry, subsequently creates a
considerable obstacle in the ability to �nd arithmetic (algebraic) means,

to dispose of them with the same rigor and thoroughness as is customary in
geometry.
Quite often the idea of the non-standard and complexity of the arithmetic

problem is related precisely to the absence of a completely elementary and es-
sential sequential theoretical basis related to arithmetic of natural, integer and
numbers in general, which forms, in addition to everything, is the foundation
of mathematical analysis. That is, the non-standard nature of the problem in
such cases is equivalent to non-informedness.
In these cases, the situation becomes ambiguous, because, on the one hand,

the lack of speci�c knowledge-tools requires its spontaneous invention in the con-
ditions of the Olympiad, and it is more complicated than choosing the necessary
combination of already known tools and technology for its purposeful use, and
on the other hand for an informed student solution of the such problem basically
becomes a matter of technique.
Thus, the olympiad (sports) value of such problems is doubtful. This does

not, however, diminish their possible educational value. But let us leave that
on the conscience of the composers of the Olympiad problems and consider the
positive aspect of this situation, which consists in motivation of the student in
additional technical and theoretical equipment, which ultimately brings him to a
higher level, and allows expanding the problem area, then there is more complex
problems, the solution of which already depends entirely from recognizing ability
of the participant of the Olympiad and his ingenuity in the use of already known
means. In this way, both the stimulation of mathematical education and the
escalation of thinking take place.
In the author�s opinion, the problems presented in the following sections will

convincingly argued that was saying in the introduction.
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Remark.
1.Abbreviation n-Met. Rec.(Methodical recommendations) means

that the problem originally has number n in the author�s brochures "Guidelines
for teachers of mathematics to prepare students for mathematical competitions"
published at 1988 in Odessa.
2.AbbreviationMRmeansMathematical Re�ections �AwesomeMath;
3. Abbreviation ZK means Zadachnik Kvanta;
4. Abbreviation SSMJ means School Science and Mathematics As-

sociation Journal
5. Also, if problem marked by sign F it means that the problem was pro-

posed by author of this book.

Part II

Problems
1 Divisibility.

Problem 1.1 (6-Met.Rec.)
Find all n such that 1 44 : : : 4| {z }

n times

is the perfect square.

Problem 1.2 (8-Met.Rec.)
Prove that number 3851980 + 181980 isn�t a perfect square.

Problem 1.3 (9-Met.Rec.)
Let f (x) = x3�x+1: Prove that for any natural a numbers a; f (a) ; f (f (a)) ; :::;are
pairwise coprime.

Problem 1.4(23-Met.Rec.)
Find the largest natural x such that 427 + 41000 + 4x is a perfect square.

Problem 1.5(24-Met.Rec.)
Prove that 5n � 4n for any natural n > 2 isn�t perfect square.
Or,
Prove that set f5n � 4n j n > 2g is free from squares.

Problem 1.6(25-Met.Rec.)
a) Prove that set f2n + 4n j n 2 Ng is free from squares;
b) Find all non negative integer n and m for which 2n+4m is perfect square.

Problem 1.7(26-Met.Rec.)
Find all n 2 N such that 3n + 55 is a perfect square.
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Problem 1.8 (27-Met. Rec.)
Prove that the following number is composite for any natural n:
a) an := 32

4n+1

+ 2;

b) bn := 23
4n+1

+ 3;

c) cn := 23
4n+1

+ 5:

Problem 1.9(28-Met. Rec.)
Prove that 5n � 1 isn�t divisible by 4n � 1 for any n 2 N:

Problem 1.10(297-Met. Rec.)
Let a; b; c; d be natural numbers such that ab = cd: Prove that for any natural

n
number a2n + b2n + c2n + d2n is composite.

Problem 1-11(30-Met. Rec.)
Prove that 53

4m � 224n+2 is divisible by 11 for any natural m;n:

Problem 1.12(32-Met. Rec.)
Is there a number whose square is equal to the sum of the squares of 1000

consecutive
integers?

Problem 1.13(33-Met. Rec.)
Let n be natural number such that 2n+ 1 and 3n+ 1 are perfect squares.
Prove that n is divisible by 40:

Problem 1.14(34-Met. Rec.)
Is it possible that sum of digits of a natural number which is a perfect square

be equal 1985?

Problem 1.15
Find all non negative integer n and m for which 2n + 4m is perfect square.

Problem1.16(37-Met. Rec.)
Prove that:
a) n! isn�t divisible by 2n:
b) ordp (((p� 1)n)!) � n+ ordp (n!) :
c) (n!)! � (((n� 1)!)!)n

d) ordp

�
(pn)!

n!

�
= n:

e) (n!)! � ((n� 1)!)n! :

Problem 1.17(38-Met. Rec.)
Prove that:
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a) (n!)!
... (n!)(n�1)! ;

b) (n!)!
... ((n� 1)!)!n;

c) (nn)!
... n!n

n�1
;

d)
�
n2
�
!
... (n!)n ;

e)
�
nm+k

�
!
... (nm)!n

k

;

f) (n �m)!
... (n!)m ;

g)
(2n)!

n! (n+ 1)!
is integer.

h) (n+ 1) (n+ 2) ::: (n+ k)
... k! for any n; k 2 N :

Problem 1.18(41-Met. Rec.)
Find all natural number n such that remainder from division Sn = 1 + 2 +

:::+ n by 5
equal 1:

Problem 1.19(123-Met. Rec.)
Show that the next integer above

�p
3 + 1

�2n
is divisible by 2n+1;i.e.l�p

3 + 1
�2nm ... 2n+1:Show that there are in�nitely many n 2 N for whichl�p

3 + 1
�2nm

not divisible by 2n+2:

2 Diophantine equation.

Problem 2.1(22-Met. Rec.)

Find all integer x such that
3x�

p
9x2 + 160x+ 800

16
is integer.

Problem 2.2(35-Met. Rec.)
Prove that equation x2 � 2xy = 1978 have no sulutions in integers.

Problem 2.3(47-Met. Rec.)
Prove that if numbers n;m 2 N satisfy to equality 2m2+m = 3n2+n then

numbers
m� n; 2m+ 2n+ 1; 3m+ 3n+ 1 are perfect squares.

Problem 2.4(42-Met. Rec.)
Find all integer solutions of equation x3�2y3�4z3 = 0 (excluding trivial x =

y = z = 0).

Problem 2.5(43-Met. Rec.)
How many natural solutions have equation 2x3 + y5 = z7?
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Problem 2.6(44-Met. Rec.)
Prove that equation x3+y3+ z3+ t3 = u4�v4 has in�nitely many solutions

in
natural x; y; z; t; u; v:

Problem 2.7(45-Met. Rec.)
How many natural solutions has equation x4 + y6 + z12 = t4?

Problem 2.8(46-Met. Rec.)
Prove that for any given integer t the following equations have no integer

solutions:
a) x3 + y3 = 9t� 4;
b) x3 + y3 = 9t� 3;
c) x3 + y3 + z3 = 9t� 4;
d) x3 + 117y3 = 5:

Problem 2.9(50-Met. Rec.)
Let a be integer number such that 3a = x2 + 2y2 for some integer numbers

x; y:
Prove that number a can be represented in the same form , that is there is
integers u; v that a = u2 + 2v2:

Problem 2.10(40-Met. Rec.)
Find conditions for irreducible fractions

a

b
and

c

d
that provide silvability of

equation

y = x2 +
a

b
x +

c

d
in integer x; y:(that parabola contain at least one (then

in�nitely many)
points M (x; y) with integer x; y:

F Problem 2.11(3932, CRUX)
Prove that for any natural numbers x; y satisfying equation x2�14xy+y2�

4x = 0
holds gcd2 (x; y) = 4x:

Problem 2.12(54-Met. Rec.)
The store has a sealant in boxes of 16lb, 17lb, 21lb. How some organization

can get without
opening boxes 185 lb of sealant and so, that the number of boxes was the

smallest?

Problem 2.13(55-Met. Rec.)
Find the number of non-negative integer solutions of equation 5x+2y+ z =

10n in term of

c
1985-2018 Arkady Alt 10



Math Olympiads Training- Problems and solutions.

given natural n.

3 Integer and fractional parts.

Problem 3.1 (56-Met. Rec.)
Find

h�
3
p
2 + 3

p
4
�3i

:

Problem 3.2 (57-Met. Rec.)
Simplify

a)
h�p

n+
p
n+ 1 +

p
n+ 2

�2i
;

b)
�p
n+

p
n+ 1 +

p
n+ 2

�
:

Problem 3.3 (59-Met. Rec.)

Solve equation fxg+
�
1

x

�
= 1; x 2 R:

Problem 3.4 (60-Met. Rec.)

Prove equality
nP
a=2

[loga n] =
nP
b=2

[ b
p
n] :

FProblem 3.5 (3095, CRUX)
Let a; b; c; p, and q be natural numbers. Using bxc to denote the integer part

of x, prove that

min

�
a;

�
c+ pb

q

��
�
�
c+ p (a+ b)

p+ q

�
:

Problem 3.6 (10-Met. Rec.)
Prove that:
a) For any n 2 N holds inequality

�
n
p
2
	
>

1

2n
p
2
;

b) For any " > 0 there is n 2 N such that
�
n
p
2
	
<
1 + "

2n
p
2
:

Problem 3.7 (11-Met. Rec.)
Let n 2 N isn�t forth degree of natural number. Then

f 4
p
ng > 1

4n3=4
:

FProblem 3.8 (J289,MR)
For any real a 2 [0; 1) prove the following identity�

a

�
1 +

�
1

1� a

���
+ 1 =

�
1

1� a

�
:

Problem 3.9 (118-Met. Rec.)
For arbitrary natural m � 2 prove that

j�
m+

p
m2 � 1

�nk
is odd

number for any natural n:
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F Poblem 3.10 (W16, J.Wildt IMO 2017)
For given natural n > 1 �nd number of elements in image of function

k 7!
�
k2

n

�
: f1; 2; :::; ng �! N [ f0g :

4 Equations, systems of equations.

FProblem 4.1(90-Met. Rec.)(Generalization of M703* Kvant)
Solve the system of equations.�

(q + r) (x+ 1=x) = (r + p) (y + 1=y) = (p+ q) (z + 1=z)
xy + yz + zx = 1

where p; q; r are positive real numbers.
Problem 4.2 (91-Met. Rec.)
Solve the system of equations8<: 2x+ x2y = y

2y2 + y2z = z
2z2 + z2x = x

:

Problem 4.3 (92-Met. Rec.)
Solve the system of equations:8<: x� y = sinx

y � z = sin y
z � x = sin z

:

Problem 4.4 (93-Met. Rec.)
Solve the system of equations:(

x1 + x2 + :::+ xn = 1

x21 + x
2
2 + :::+ x

2
n =

1

n

:

Problem 4.5 (94-Met. Rec.)
Solve the system of equations:

a)
�

x2 + y2 + z2 = 1
x+ y + az = 1 + a

; a � 1

2
;

b)

8<: x+ y + z = a
1

x
+
1

y
+
1

z
=
1

a

; a 6= 0:

Problem 4.6 (95-Met. Rec.)
Given that�

x+ y + z = 2
xy + yz + zx = 1

:

Prove that x; y; z 2 [0; 4=3] :

Problem 4.7(96-Met. Rec.)
Solve the system of equations:8<: 2 (cosx� cos y) = cos 2x cos y

2 (cos y � cos z) = cos 2y cos z
2 (cos z � cosx) = cos 2z cosx

:
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5 Functional equations and inequalities

Problem 5.1 (97-Met. Rec.)
Find all functions de�ned on R such that:
a) f

�
x2
�
� ( f (x))2 � 1=4 and x1 6= x2 =) f (x1) 6= f (x2) ;

b) f (x) � x for any x 2 R and f (x+ y) � f (x) + f (y) for any x; y 2 R:

Problem 5.2 (99-(Met. Rec.)
Function f (x) de�ned on [0; 1] and satis�es to equation f (x+ f (x)) =

f (x) for
any x 2 [0; 1] :Prove that f (x) = 0 for all x 2 [0; 1] :

Problem 5.3 (100-Met. Rec.)
Find all continuous on R functions f suth that f (x) f (y)� xy = f (x) +

f (y)� 1 holds
for any x; y 2 R:

Problem 5.4 (101-Met. Rec.)
Let n 2 N� f1g : Find all de�ned on R functions f such that nf (nx) =

f (x) + nx for
any x 2 R and f is continuous in x = 0:

Problem 5.5 (14-Met. Rec.)
Prove that there is no function f : R �! R continuous on R such that

f (x+ 1) (f (x) + 1) + 1 = 0:

Problem 5.6 (15-Met. Rec.)
For any given n 2 N �nd all functions f : N �! R such that

f (m+ k) = f (mk � n) ;m; k 2 N and mk > n:

FProblem 5.7 (U182,MR)

Find all continuous on [0; 1] functions f such that f (x) = c; if x 2
�
0;
1

2

�
and

f (x) = f (2x� 1) if x 2
�
1

2
; 1

�
;where c is given constant.

6 Recurrences.

Problem 6.1 (4-Met. Rec.)
Let p is some natural number. Prove, that exist in�nitely many pairs (x; y) of

natural numbers such, that
x2 + p

y
and

y2 + p

x
are integer numbers.

Problem 6.2 (5-Met. Rec.)
Let sequence is de�ned recursively as follow:
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an+3 =
an+1an+2 + 5

an
; n 2 N and a1 = a2 = 1; a3 = 2:

Prove that all terms of this sequence are integer numbers.

Problem 6.3 (16-Met. Rec.Problem 5, Czechoslovakia, MO 1986 )
Sequence of integer numbers a1; a2; :::; an;::: de�ned as follows:
a1 = 1; an+2 = 2an+1 � an + 2; n 2 N:

Prove that for any n 2 N there is such m 2 N that anan+1 = am:

Problem 6.4 (17-Met. Rec.)
Prove that if sequence (an)n�1 satisfy to recurrence an+2 = a

2
n+1 � an; n 2

N with initial
conditions a1 = 39; a2 = 45 then in�nitely many terms of this sequence is

divisible
by 1986:

Problem 6.5* (31-Met. Rec.)
Given a quad of integer numbers (a; b; c; d) such that at least two of them

are di¤erent.
Starting from this quad we create new quad (a1; b1; c1; d1) = (a� b; b� c; c� d; d� a) :
By the same way from quad (a1; b1; c1; d1) we obtain quad (a2; b2; c2; d2) and

so on...
Prove that at least one from the numbers a100; b100; c100; d100 bigger than

109:

Problem 6.6* (19-Met. Rec)
Let a > 1 is natural number. Sequence a1; a2; :::; an;:::The sequence is de�ned

recursively(
a1 = a

an = a
n �

P
tjn; t<n

at :

Prove that an
... n for any n 2 N ( an divisible by n for any n 2 N).

Problem 6.7* (G.Demirov, Matematika 1989,No.7 ,p.34, Bolgaria)
Let sequence (an) de�ned by the recurrence
an+2 = an+1an � 2 (an+1 + an)� an�1 + 8; n 2 N with initial conditions
a0 = 4; a1 = a2 =

�
a2 � 2

�2
, where a � 2:

Prove that for any n 2 N expression 2+pan is a square of some polinomial
of a:

Problem 6.8
Find general term of the sequence:

a) an+1 =
1

27

�
8 + 3an + 8

p
1 + 3an

�
; a1 =

8

3
;

b) an+1 =
1

16

�
1 + 4an +

p
1 + 24an

�
; a1 = 1:
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Problem 6.9*
Let sequence (an) be de�ned by equation

�p
2� 1

�n
=
p
an + 1�

p
an:

a) Find recursive de�nition for (an) and prove that an is integer for all
natural n;
b) Let tn :=

p
2an (an + 1): Find recursive de�nition for (tn) and prove

that tn is
integer for all natural n:

Problem 6.10.(Proposed by S. Harlampiev, Matematika 1989,
No.2, p,43, Bolgaria)
Let sequence de�ned by recurrence

an+2 =
2an+1 � 3an+1an + 17an � 16
3an+1 � 4an+1an + 18an � 17

; n 2 N [ f0g
with initial conditions a0 = a1 = 2:

Prove that an for any n 2 N [ f0g can be represented in the form 1 +
1

m2

where m 2 N.

Problem 6.11*. (Proposed by Bulgaria for 1988 IMO)

Let a0 = 0; a1 = 1; an+1 = 2an+an�1; n 2 N. Prove that an
... 2k () n

... 2k:

7 Behavior(analysis) of sequences

Problem 7.1 (104-Met.Rec)
For natural n � 3 let a1; a2; :::; an be real numbers such that a1 = an = 0 and
ak�1 + ak+1 � 2ak; k = 2; :::; n� 1: Prove that ak � 0; i = 1; 2; :::; n:

Problem.7.2 (105-Met. Rec.)

a) Let a1 = 1 and an+1 = an +
1

an
; n 2 N. Prove that 14 < a100 < 18:

Find lower and upper bounds for an:(Problem 7 from all Soviet
Union Math Olympiad,1968)

b) Let a1 = 1 and an+1 = an +
1

a2n
; n 2 N.

i.Prove that (an) unbounded.
ii. a9000 > 30;
iii.F �nd good (assimptotic) bounds for (an) :

Problem 7.3 (106-Met. Rec.)
Find all values of a;such that sequence a0; a1; :::; an; ::: de�ned as follows
a0 = a; an+1 = 2

n � 3an; n 2 N [ f0g is increasing sequence.

Problem 7.4 (107-Met. Rec.)
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Known that sequence a1; a2; :::; an; ::: satisfy to inequality

an+1 �
�
1 +

b

n

�
an � 1; n 2 N; where b 2 [0; 1):

Prove that there is n0 such that an0 < 0:

Problem 7.5* (109-Met.Rec.) (Team Selection Test, Singapur).

Let n 2 N, a0 =
1

2
and ak+1 = ak +

a2k
n
; k 2 N. Prove that

1� 1

n
< an < 1:

Problem 7.6 (110-Met. Rec.)
Find lim

n!1

n�
2 +

p
3
�no

:

Problem 7.7 (111 -Met. Rec.)
a) Let sequence (xn) satisfy to recurrence xn+1 = xn (1� xn) ; n 2 N[f0g and
x0 2 (0; 1) : Prove that lim

n!1
nxn = 1;

b) Let sequence (xn) satisfy to recurrence xn+1 = x2n � xn + 1 and x1 =
a > 1:

i. Find
1P
n=1

1

xn
;

ii. Find
�

xn+1
x1x2:::xn

�
:

c) Let sequence (xn) satisfy to recurrence xn = 0:5x2n�1 � 1; n 2 N with
initial
condition x0 =

1

3
:

Find lim
n!1

xn:

Problem 7.8 (112-Met. Rec.)
Find lim

n!1
xn where x0 = 1=3; xn+1 = 0:5x2n � 1; n 2 N [ f0g :

Problem 7.9* Let a1 =
1

2
and an+1 = an � na2n; n 2 N:

a) Prove that a1 + a2 + :::+ an <
3

2
for all n 2 N.

b�) Find "good" bounds for an;i.e. such two well calculating function
l (n) and u (n)

such that l (n) � an � u (n) for all n greater then some n0 and lim
n!1

an
u (n)

=

lim
n!1

an
l (n)

= 1

( This equivalent to lim
n!1

an
l (n)

= lim
n!1

u (n)

l (n)
= 1 or to lim

n!1

an
u (n)

= lim
n!1

l (n)

u (n)
=

1 );
We call two function l (n) and u (n) asymtotically equal and write it l (n) �

u (n)
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if lim
n!1

l (n)

u (n)
= 1. Thus function l (n) and u (n) is good bound i¤ l (n) �

u (n) and
l (n) � an � u (n) :
c) Determine asymptotic behavior of an ,i.e. �nd function asymptotically

equal to an:
( or more simple question: Find lim

n!1
n2an).

Problem 7.10

Let sequence (an) satisfy to recurrence an+1 =
a2n � 2
2

; n 2 N.Prove that:
i. If a1 = 1 then (an) is bounded;
ii. If a1 = 3 then (an) is unbounded.

Problem 7.11
Let sequence (an) de�ned by a1 = 1; an+1 =

3

4
an +

1

an
; n 2 N. Prove that:

i. (an) is bounded;

ii.Prove that jan � 2j <
�
2

3

�n
; n 2 N.

Generalization: an+1 = pan +
1

an
; n 2 N for any given p 2 (0; 1) :

Problem 7.12 (Bar-Ilan University math. olympiad, Israel).

Let a1 = 1; an+1 = 1 +
1

an
; n 2 N. Prove that there is real number b which

for all n 2 N satisfy inequality a2n�1 < b < a2n:

Problem 7.13
Let a0 = 1and an+1 =

an
2
+
1

an
for n = 0; 1; 2; :::::Prove that

2p
a2n � 2

is

an
integer for every natural n:

Problem 7.14
Let a0 = 1and an+1 =

an
2
+
1

an
for n = 0; 1; 2; :::::Prove that

2p
a2n � 2

is

an
integer for every natural n:

Problem 7.15(All Israel Math. Olympiad in Hayfa)
Given m distinct, non-zero real numbers a1; a2; :::; am;m > 1:Let for any

natural r � 1
Ar = a

r
1 + a

r
2 + :: + a

r
m : Prove that for odd m inequality Ar 6= 0 holds for

all r up to �nite
set of values r:

Problem 7.16*(#7,9-th grade,18-th All Soviet Union Math Olympiad,1984�
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Proposed by Agahanov N.H.)
Let x1 = 1; x2 = �1 and xn+2 = x2n+1 �

xn
2
; n 2 N .

Find lim
n!1

xn:

Problem 7.17
Given sequence of positive numbers (an) such that an+1 � an (1� an) :
Prove that sequence (nan) is bounded.

Problem 7.18 (BAMO-2000)
Given sequence (an) such that a1 > 0 and a2n � an � an+1; n 2 N.
Prove that an <

1

n
for all natural n � 2:

FProblem 7.19 (SSMJ 5281)
For sequence fangn�1 de�ned recursively by an+1 =

an
1 + apn

for n 2 N, a1 =
a > 0;

determine all positive real p for which series
1P
n=1

an is convergent.

Problem 7.20
Given a1 = 5; an+1 = a2n � 2; n 2 N:
a) Find lim

n!1

an+1
a1a2:::an

;

b) Find lim
n!1

�
1

a1
+

1

a1a2
+ :::+

1

a1a2:::an

�
:

Problem 7.21*

Let a1 = a;where a > 0; an+1 =
an

1 +
p
an
, n 2 N:

a) Prove that sum Sn = a1 + a1 + :::+ an is bounded ;
b�) F Find "good" bounds for an if a1 = 9:(Or �nd asymptotic representa-

tion for an)
c) Find the lim

n!1
n2an:

F Problem 7.22 (One asymptotic behavior) (S183)

Let sequence (pn) satis�ed to recurrence pn = pn�1 �
p2n�1
2
; n = 1; 2; ::: and

p0 2 (0; 1) :
Prove that

2

n+
p
n+ p+ 1

< pn <
2

n+ p
; n 2 N; where p := 2

p0
:

8 Inequalities and max,min problems.

Comparison of numerical expressions.
Problem 8.1 (81-Met. Rec.)
Determine which number is greater (here _ is sign of ineqeality < or > in

unsettled state).
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a) 3111 _ 1714;
b) 12723 _ 51318 ;
c) 5336 _ 3653;
d) tan 34� _ 2

3
;

e) sin 1 _ log3
p
2 ;

f) log(n�1) n _ logn (n+ 1) ;
h) 100300 _ 300!;
g) (n!)

2 _ nn;
i)

q
2 +

p
3 +

p
2 + :::_

q
3 +

p
2 +

p
3 + ::: (n roots in each expression).

For any natural n compare two numbers an =
q
2 +

p
3 +

p
2 + ::: and

bn =

q
3 +

p
2 +

p
3 + ::: (each use n square root simbols).What is greater?

Proving inequalities
Problem 8.2 (Inequality with absolute value)
Let a; b; c be real numbers such that a+ b+ c = 0:Prove that

ja � b � cj � 1

4
max

n
jaj3 ; jbj3 ; jcj3

o
:

Problem 8.3 (69-Met. Rec.)

Let x; y; z � 0 and x+ y + z � 1

2
: Prove that

(1� x) (1� y) (1� z) � 1

2
:

Problem 8.4 (Problem 6 from 6-th CGMO, 2-nd day,2007).
For nonnegative real numbers a; b; c with a+ b+ c = 1; prove thats

a+
(b� c)2

4
+
p
b+

p
c �

p
3:

Problem 8.5 (70-Met. Rec.)
Prove that for any positive real a1; a2; :::; an; n � 3 holds inequality

nP
cyc

a1 � a3
a2 + a3

� 0 (Or,
nP
i=1

ai � ai+2
ai+1 + ai+2

� 0 (an+1 = a1; an+2 = a2).

Problem 8.6 (71-Met. Rec.)
For any positive real a; b; c prove inequality

a3

a2 + ab+ b2
+

b3

b2 + bc+ c2
+

c3

c2 + ca+ a2
� a+ b+ c

3
:

Problem 8.7 (72-Met. Rec.)
Prove that any nonnegative real a; b; c holds inequlity
a5 + b5 + c5 � abc (ab+ bc+ ca) :
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Problem 8.8 (74-Met. Rec.)

Prove that
p
4a+ 1+

p
4b+ 1+

p
4c+ 1 �

p
21 if a; b; c > �1

4
and a+b+c =

1:

Problem 8.9 (75-Met. Rec.)
Prove that (x1 + x2 + :::+ xn + 1)

2 � 4
�
x21 + x

2
2 + :::+ x

2
n

�
; xi 2 [0; 1] ; i =

1; 2; :::; n:

Problem 8.10 (76-Met. Rec.)
Let x; y; z be positive real numbers. Prove that x3z+y3x+z3y � xyz (x+ y + z) :

Problem 8.11 (77-Met. Rec.)(Oral test in MSU)

Solve inequality
�
x1y1 + x2y1
x1y1 + x1y2

�x1 �x2y2 + x1y2
x2y2 + x2y1

�x2
� 1 for real positive

x1; x2;y1; y2:

Problem 8.12 (78-Met. Rec.)
Prove inequality
p
2 +

p
4� 2

p
2 +

p
6� 2

p
6 + :::+

q
2n� 2

p
n (n� 1) �

p
n (n+ 1):

Problem 8.13 (79-Met. Rec.)
Given that a1; a2; :::; an are positive numbers and a1+a2+:::+an = 1:Prove

that
nP
k=1

ak

s
1�

�
kP
i=1

ai

�2
<
4

5
:

Problem 8.14 (84-Met. Rec.)
Let a1; a2; :::; an be positive real numbers. Prove that

a1a2+a2a3+ :::+an�1an+ana1 �

8><>:
(a1 + a2 + :::+ an)

2

n
; if n = 2; 3

(a1 + a2 + :::+ an)
2

4
; if n � 4

:

Problem 8.15 (85-Met. Rec.).Original setting.
Prove that for any numbers a1; a2; :::; an 2 [0; 2] ; n � 2 holds inequality

nP
i=1

nP
j=1

jai � aj j � n2:

*More di¢ cult variant of the problem:

Find max
nP

1�i<j�n
jai � aj j ; if a1; a2; :::; an be any real numbers such that

jai � aj j � 2; i; j 2 f1; 2; :::; ng :

F Problem 8.16 (as modi�cation of S97,MR )
For any real x1; x2; :::; xn such that x1 + x2 + :::+ xn = n prove inequality

x21x
2
2:::x

2
n

�
x21 + x

2
2 + :::+ x

2
n

�
� n:
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FProblem 8.17 (W6, J. Wildt IMO, 2014)
Let D1 be set of strictly decreasing sequences of positive real numbers
with �rst term equal to 1:For any xN := (x1; x2; :::; xn; :::) 2 D1 prove that

1P
n=1

x3n
xn + 4xn+1

� 4

9
and �nd the sequence for which equality occurs.

F Problem 8.18 (SSMJ 5345)
Let a; b > 0: Prove that for any x; y holds inequality

ja cosx+ b cos yj �
p
a2 + b2 + 2ab cos (x+ y)

and �nd when equality occurs.

FProblem 8.19
For any natural n and m prove inequality�

nm + nm�1 + :::+ n+ 1
�n � (m+ 1)n (n!)m :

FProblem 8.20
Prove that (n+ 1) cos

�

n+ 1
� n cos �

n
> 1 for any natural n � 2:

Finding maximum,minimum and range.
Problem 8.21 (82-Met. Rec.)

Find the min
�x2 + 2x� 1
6x2 � 7x+ 3 without using derivative.

Problem 8.22 (83-Met. Rec.)

Let S (x; y) := min
�
x;
1

y
; y +

1

x

�
where x; y be positive real numbers. Find

max
x;y

S (x; y) :

FProblem 8.23(58-Met. Rec.).

Find the maximal value of remainder from division of natural number n by
natural number a;
where 1 � a � n ( max

1�a�n
ra (n) ; n 2 N ).

FProblem 8.24
Find min

x;y;z
F (x; y; z) ;where F (x; y; z) = max fjcosx j+ jcos 2yj ; jcos y j+ jcos 2zj ; jcos z j+ jcos 2xjg :

Problem 8.25 (73-Met. Rec.)(M1067, ZK)
Let x; y; z be positive real numbers such that xy + yz + zx = 1:
Find the minimal value of expression

x

1� x2 +
y

1� y2 +
z

1� z2 :

FProblem 8.26** (SSMJ 5404)
For any given positive integer n � 3 �nd smallest value of product
x1x2:::xn where x1; x2; :::; xn > 0 and

1

1 + x1
+

1

1 + x2
+ :::+

1

1 + xn
= 1:
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9 Invariants.

Problem 9.1 (65-Met. Rec.).

a) An arbitrary fraction
a

b
may be replaced by one of the fractions

a� b
b
;
a+ b

b
;
b

a
:

Is it possible that after several such transformation starting with fraction
1=2 obtain the fraction 67=91?

b) An arbitrary pair of fraction
�a
b
;
c

d

�
may be replaced by one the following

pairs of fractions�
a+ b

b
;
c+ d

d

�
;

�
a� b
b
;
c� d
d

�
;

�
b

a
;
d

c

�
:

Is it possible that after several such transformation starting with the pair
(1=2; 3=4) obtain the
the pair (5=6; 9=11)?
c) Given the triple of number

�
2;
p
2; 1=

p
2
�
:Allowed any two numbers from

current triple (a; b; c)
replace with their sum divided by

p
2 and their di¤erence divided by

p
2: Is

it possible after some
numbers of allowed transformations obtain the triple

�
1;
p
2;
p
2� 1

�
:

Problem 9.2 (66-Met. Rec.).

On Rainbow Island living 13 red, 15 green, 17 yellow chameleons. When two
chameleons of
one color meet each other then nothing happens, but if they have di¤erent

color, they both change
the color to the third one. Is it possible that with time all chameleons on

island became of one color?
Problem 9.3
In the box are 13 red and 17 white balls. Permitted in any order and
any number of the following operations:
1. Remove from the box one red ball and put it in a box two white balls;
2. Put it in a box one red ball and two white balls;
3. Remove from the box two red balls and put it in a box one white ball;
4. Remove from the box one red ball and two white balls.
Is it possible that after some number of permitted operations to lay in
the box 37 red and 43 white balls?

9.1 Miscellaneous problems.

Problem 10.1 (1-Met. Rec.)
The 8 pupils bring from forest 60 mushrooms. Neither two from them bring

mushrooms equally.
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Prove that among those pupils has three pupils, whose collect amount of
mushrooms not less
than the other �ve pupils.

Problem 10.2 (2-Met. Rec.)
2000 apples lies in several baskets. Permitted to remove the basket and

removing any
number of the apples from baskets.
Prove it�s possible to obtain situation that in all baskets that remains num-

bers of apples
are equal and common number of apples would be not less then 100:

Problem 10.3 (3-Met. Rec.)
Prove that digit of tens in 3n is even number.

Problem 10.4 (7-Met. Rec.)
Does exist natural number such that �rst 8 digits after decimal dot of

p
n

are 19851986?

Problem 10.5 (12-Met. Rec.)
Prove that if 2a+3b+6c = 0; a 6= 0 then quadratic equation ax2+bx+c = 0
has at least one root on the interval (0; 1) :

Problem 10.6 (13-Met. Rec.)
Prove that if a (4a+ 2b+ c) < 0 then b2 > 4ac:

Problem 10.7 (18-Met. Rec.)
Prove that derivative of function

f (x) =
x� 1
x� 2 �

x� 3
x� 4 � ::: �

x� 2n+ 1
x� 2n

is negative in all points of domain of f (x) :

Problem 10.8 (20-Met. Rec.)
Is it always from the sequence of n2+1� th numbers a1; a2; :::; an2 ; an2+1 is

possible to
select a monotonous subsequence of lenght n+ 1?

Problem 10.9 (22-Met. Rec.)
Let natural numbers n;m satisfy inequality

p
7 � m

n
> 0: Then holds in-

equality
p
7� m

n
>

1

mn
As variant : Find max

n
m2 � 7n2 j m;n 2 N and m

n
<
p
7
o
:

Problem 10.10 (39-Met. Rec.)
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Rational number represented by irreducuble fraction
p

q
belong to interval�

6

13
;
7

15

�
:

Prove that q � 28:

FProblem 10.11
Find all one hundred digits numbers such that each of them equal to sum

that addends are
all its digits, all pairwise products of its digits and so on,... and at last

product of all its digits.

Problem 10.12 (51-Met. Rec.)
Let P (x) be polynomial with integer coe¢ cients. Known that P (0) and

P (1) are odd
numbers. Prove that P (x) have no integer roots.

Problem 10.13 (52-Met. Rec.)
Known that value of polynomial P (x) with integer coe¢ cients in three dif-

ferent points equal to 1:
Is it possible that P (x) has integer root?

Problem 10.14 (53-Met. Rec.)
Let P (x) be polynomial with integer coe¢ cients and P (n) = m for some

integer n;m(m 6= 0).
Then P (n+ km) divisible by m for any natural k:

Problem 10.15 (61-Met. Rec.)
Find the composition g (x) = f (f (:::f (x) :::))| {z }

n�times

; where

a) f (x) =
xp
1� x2

;

b) f (x) =
x
p
3� 1

x+
p
3
:

Problem 10.16 (62-Met. Rec.)

Let F (x) =
4x

4x + 2
:Find F

�
1

1988

�
+ F

�
2

1988

�
+ :::+ F (1) :

Problem 10.17(63-Met. Rec.)
Let f (q) the only root of the cubic equation x3+px�q = 0;where p is given

positive real number.
Prove that f (q) is increasing function in q 2 R:

Problem 10.18 (64-Met. Rec.)
Let P (x) be a polynomial such that equation P (x) = x have no roots. Is

there a root of the
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equation P (P (x)) = x?

Problem 10.19 (67-Met. Rec).
The two rows of boys and girls set (in the �rst row, all boys, all girls in the

second row),
so that against every girl stand the boy that not lower than girl, or di¤ers

by the growth
from her not more than 10 cm.
Prove that if children positioned in the each row accordingly their growth

then against
each girl will be a boy which again not lower than girl, or di¤ers by the

growth
from her not more than 10 cm.

Problem 10.20 (86-Met. Rec.)
Find all values of real parameter b for which system�

x � (y � b)2

y � (x� b)2
has only solution.

FProblem 10.21 (CRUX 3090)
Find all non-negative real solutions (x; y; z) to the following system of in-

equalities: 8<: 2x(3� 4y) � z2 + 1
2y(3� 4z) � x2 + 1
2z(3� 4x) � y2 + 1

:

FProblem 10.22 (87-Met.Rec.)
Let A1; A2; A3; A4 be consequtive points on a circle and let ai is number of

rings on the
rod at the point Ai = 1; 2; 3; 4: Find the maximal value of 2�rings chains,

that can be
constructed from rings taken by one from any 2 neighboring, staying in cyclic

order, rods.

Problem 10.23 (Problem with light bulbs).
n light bulbs together with its switches initially turned o¤ arranged in a row

and numbered
from left to right consequtively by numbers from 1 to n:
If you click to the k-th switch than all light bulbs staying on the places

numbered
by multiples of k change state (turned o¤, turned on).
Some person moving from left to right along a row of light bulbs switch clicks

each
bulb (once). How many bulbs will light up when he comes to the last light

bulb.
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FProblem 10.24 (O274, MR4,2013).
Let a; b; c nonnegative integer numbers such that a and b are relatively prime.
How many lattice points belong to domain

D := f(x; y) j x; y 2 Z; x; y � 0 and bx+ ay � abcg :

Problem 10.25 (102.-Met. Rec.)
Let � be irrational number. Prove that following function f (x) is non

periodic:
a) f (x) = sin�x+ sinx;
b) f (x) = sin�x+ cosx;
c) f (x) = tan�x+ tanx;
d) f (x) = tan�x+ sinx:

Problem 10.26 (103.-Met.Rec)

Let a1 =
1

2
; an+1 = an+a

2
n:Determine

�
1

a1 + 1
+

1

a2 + 1
+ :::+

1

an + 1

�
for

n � 2:
Problem 10.27 (Austria �Poland, 1980).
Given numerical sequence which for any k;m 2 N satis�es to inequality

jam+k � ak � amj � 1:

Prove that for any p; q 2 N holds inequality
����app � aqq

���� < 1

p
+
1

q
:

Problem 10.28 (M.1195 ZK Proposed by ,Proposed by O.T.Izhboldin)

Prove that if sequence (an) satis�ed to condition jan+m � an � amj �
1

n+m
;then

(an) is arithmetic progression.

FProblem 10.29 (3571,CRUX,2010)
For given natural n � 2; among increasing arithmetic progression x1; x2; :::; xn such

that
x21 + x

2
2 + ::: + x

2
n = 1; �nd arithmetic progression with greates common

di¤erence d:

Problem 10.30.Quickies-Q2(CRUX?)
What is the units digit of the real number�
15 +

p
220
�2004

+
�
15 +

p
220
�2005

?

Part III

Solutions.
1. Divisibility.
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Problem 1.1
Noting that 144 = 122 and 1444 = 382 we will prove that there are no other

squares among numbers an = 144 : : : 4| {z }
n times

:

Since an = 10n +
4 (10n � 1)

9
=
13 � 10n � 4

9
su¢ ce to prove that 13 � 10n �

4 can�t be a perfect square for n � 4:Let n � 4 and assume that 13 � 10n � 4 =
t2 () 13 � 10n = t2 + 4 for some t 2 N:

Since n � 4 then 13 � 10n
... 16 =) t2 + 4

... 16:

Since t2 + 4
... 16 =) t2 + 4

... 4 then t = 2k for some k and , therefore,

t2+4
... 16 () 4

�
k2 + 1

� ... 16 () k2+1
... 4 imply k is odd, that is k = 2l+1:

Then t2 + 4 = (4l + 2)
2
+ 4 = 16l2 + 16l + 4 isn�t divisible by 16 and this

contradict to t2 + 4
... 16:

Using modular notation we have t2 � �4 (mod 16) =) t = 2k and, there-
fore, t2 � �4 (mod 16) () 4k2 � �4 (mod 16) () k2 � �1 (mod 4) but
that impossible because for k � 0; 1; 2; 3 (mod 4) we have k2 � 0; 1 (mod 4) :(This
kind of solution we call "Reduction by modulo 16":)

Problem 1.2
This problem can be solved by reduction modulo 13. Indeed, since 385 �

�1 (mod 13) and 182 � 52 (mod 13) � 1 (mod 13) then 3851980 � 1 (mod 13) and 181980 =�
182
�940 � 1 (mod 13) :Hence, 3851980 + 181980 � 2 (mod 13) :There is no nat-

ural t such that t2 � 2 (mod 13) : Indeed, since t � r (mod 13) ; where r 2
f0;�1;�2; :::;�6g then t2 � r2 (mod 13) and r2 (mod 13) 2 f0;�1;�3;�4g :
But 2 (mod 13) =2 f0;�1;�3;�4g :
Addition.
Note that natural numbers represented in form 3k + 2; 5k � 2; 7k + 3; 7k +

5; 7k + 6; 11k + r;where r 2 f2; 6; 7; 8; 10g can�t be a perfect square.
Problem 1.3
Let fn = f�f�:::�f (n-time composition). We should prove that gcd (fn (a) ; fm (a)) =

1 for any n;m 2 N and n 6= m:
First note that gcd (x; f (x)) = 1:Indeed, gcd (x; f (x)) = gcd

�
x; x3 � x+ 1

�
=

gcd (x;�x+ 1) = 1:Su¢ ce to prove that gcd (x; fn (x)) = 1 for any n 2 N
and any integer x: Note that fn (x) can be represented in the form fn (x) =
xPn (x) + 1where Pn (x) some polynomial with integer coe¢ cients.
Indeed,

P1 (x) = x
2 � 1 andfn+1 (x) = xPn+1 (x) + 1 = f (fn (x)) =

(xPn (x) + 1)
3�(xPn (x) + 1)+1 = x

�
x2P 3n (x) + 3xP

2
n (x) + 2Pn (x)

�
+1 =)

Pn+1 (x) = x
2P 3n (x) + 3xP

2
n (x) + 2Pn (x) :

c
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So, gcd (x; fn (x)) = gcd (x; xPn (x) + 1) = gcd (x; 1) = 1:(Here was used
again the Preservation Lemma (see solution to the Problem 6.1))

Problem 1.4
Consider 2 cases.
1. x � 27:Then

427 + 41000 + 4x = y2 () 22x
�
1 + 254�2x + 22000�2x

�
= y2 =)

y = 2xa =) 1 + 254�2x + 22000�2x = a2:

Since 1+254�2x+22000�2x > 22000�2x and 1+254�2x+22000�2x < 1+2�21000�x+
22000�2x () 254�2x < 21001�x then 22000�2x < a2 <

�
1 + 21000�x

�2 ()
21000�x < a < 1 + 21000�x that is the contradiction.

2. Let 27 < x: Then,

427 + 41000 + 4x = y2 () 254
�
1 + 22x�54 + 21946

�
= y2 =)

y = 227a =) 1 + 22x�54 + 21946 = a2:

Note that 1+ 22x�54 +21946 = 1+ 21946 +22x�54 = 1+ 2 � 21945 +
�
2x�27

�2
be perfect square if 1945 = x � 27 () x = 1972:For any x > 1972 we have
22x�54 < a2 and a2 < 1+2x�26+22x�54 = 1+2 �2x�27+22x�54 =

�
1 + 2x�27

�2
since 2x�26 > 21946 () x� 26 > 1946 () x > 1972:

Hence,
�
2x�27

�2
< a2 <

�
1 + 2x�27

�2 () 2x�27 < a < 1 + 2x�27; that is
the contradicton.
So, there is no x > 1972 for which 427 + 41000 + 4x is a perfect square and

answer to the problem is x = 1972:
Problem 1.5
Suppose that there is m such that 5n � 4n = m2:Then m � 1 (mod 2) ()

m = 2k + 1 and, therefore, 5n = 4n + 4k (k + 1) + 1 =) 5n � 1 (mod 8) ()
n = 2t; t 2 N:
Thus, 5n � 4n = m2 () 52t � 42t = m2 () 52t �m2 = 42t ()8<: 5t �m = 2p

5t +m = 2q

p+ q = 4t; p < q
()

8<: 5t = 2p�1 + 2q�1

m = 2q�1 � 2p�1
p+ q = 4t; p < q

()

8<: 5t = 2p�1 (2q�p + 1)
m = 2q�1 � 2p�1
p+ q = 4t; p < q

()

8<: 5t = 2q�p + 1
m = 2q�1 � 2p�1

p = 1; q = 4t� 1; t 2 N
()

�
5t = 42t�1 + 1
m = 42t�1 � 1 ; t 2 N:

:

Since n > 2 then t > 1:But for any t � 2 holds inequality 5t < 42t�1(can be
proved by MI ). Thus, set f5n � 4n j n > 2g is free from squares.
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Problem 1.6
a) Suppose that there is m such that 2n + 4n = m2:

Then 2n (1 + 2n) = m2 =)
�

n = 2k
m = 2ka

=) 1 + 22k = a2 =)

22k < a2 <
�
2k + 1

�2 () 2k < a < 2k+1 that is the contradiction.
b*) First consider particular case.
Let n = 0: Then we obtain equation 1 + 4m = k2 which have no solutions

in m 2 N [ f0g :
Indeed, since k = 2p+1; p 2 N (because p � 2 is odd) then 1+4m = k2 ()

4m = p (p+ 1) :
If p is odd it must be equal 1 (because prime decomposition of p (p+ 1) is

22m).
Then 4m = 2;that is the contradiction;
If p is even then p + 1 > 1 is odd and, therefore, has odd prime divisor �

that is the contradiction again. Thus, 1 + 4m can�t be a perfect square.
Then for further we can assume that n 2 N:We will prove that if 2n+4m =

k2 for some m 2 N [ f0g and k 2 N then n > 2m:
Indeed, assume that n � 2m we obtain 2n+4m = k2 () 2n

�
1 + 22m�n

�
=

k2:
If n = 2m then 2n+1 = k2 that is a contradiction because n+ 1 is odd;
If n < 2m then 1+22m�n is odd and, therefore, from 2n

�
1 + 22m�n

�
= k2

follows that n = 2p for some natural p and k = 2pq for some odd q: Hence,
1 + 22(m�p) = q2 () 1 + 4m�p = q2:But 1 + 4m�p can�t be a perfect square.
Since n > 2m then 2n + 4m = k2 () 4m

�
2n�2m + 1

�
= k2 and,

therefore, 2n�2m+1 is a pefect square. Consider equation 2p+1 = q2 () 2p =
(q � 1) (q + 1) where p 2 N and q > 1 is odd. Then q�1 = 2a; q+1 = 2b; where
b > a and b+ a = p:
We have q = 2b�1 + 2a�1; 2b�1 � 2a�1 = 1 () 2a�1

�
2b�a � 1

�
= 1 ()�

a = 1
b� a = 1 ()

�
a = 1
b = 2

=)
�
q = 3
p = 3

:

Thus, 2p+1 = q2 ()
�
q = 3
p = 3

and, therefore, 2n+4m is a perfect square

i¤ n = 2m+ 3 and m 2 N [ f0g :
Problem 1.7
We should �nd all n for which 3n + 55 = m2 for some m:
Case 1. Let n = 2k + 1 then 32k+1 + 55 = m2 =) m2 � 2 (mod 4) :
But that impossible because for any m holds m � 0; 1 (mod 4) :
Case 2. If n = 2k then 32k + 55 = m2 =) 32k < m2:
For k such that

32k + 55 <
�
3k + 1

�2 () 55 < 2 � 3k + 1 () 27 < 3k () 4 � k

we have 32k < m2 = 32k + 55 <
�
3k + 1

�2
=) 3k < m < 3k + 1;that is the

contradiction.
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Remains consider k = 1; 2; 3:
If k = 1 then 32k + 55 = 9 + 55 = 64 =) n = 2;m = 8
If k = 2 then 32k + 55 = 81 + 55 = 136
If k = 3 then 32k + 55 = 36 + 55 = 784 = 282 =) n = 6;m = 28:
Answer: n = 2; 6:
(Variant of the problem.
Find all n 2 N such that an + b is perfect square if:
a) a = 4; b = 5;
b) a = 8; b = 9;
c) a = 3; b = 55).

Problem 1.8
a)
Solution 1.(Elementary with Math Induction)
Note that a0 = 32

4�0+1
+ 2 = 11; a1 = 3

24�1+1 + 2 = 332 + 2 = 332 � 9 + 11 =
9
�
330 � 1

�
+ 11 and 330 � 1 =

�
35 � 1

� �
325 + 320 + :::+ 35 + 1

�
divisible

by 11 because 35 � 1 = 243� 1 = 112 � 2:
And we will prove, using Math Induction, that an divisible by 11 for any

n 2 N:
Since Base of Math Induction already provided, remains the to prove (Step of

MI) namely, for any n 22 N in supposition that 11 j an we will prove 11 j an+1:
We have an+1 = 32

4n+5

+ 2 = 32
4n+1�16 + 2 =

��
32

4n+1

+ 2
�
� 2
�16

+ 2 =

(an � 2)16 + 2: Since

(an � 2)16 = a16n �
�
16

1

�
a15n � 2 +

�
16

2

�
a14n � 22 � :::�

�
16

15

�
an � 215 + 216

and 11 j an remains to prove 11 j
�
216 + 2

�
() 11 j

�
215 + 1

�
:

We have 215 + 1 =
�
25 + 1

� �
210 � 25 + 1

�
= 3 � 11 �

�
210 � 25 + 1

�
:

Solution 2.(Elementary, using factorization
an � bn = (a� b) an�1 + an�2b+ :::+ bn).

Since rem11

�
35
�
= 1 (35� 1 = 243� 1 = 112 � 2) we will �nd rem5

�
24n+1

�
:

We have 24n+1 = 2 (16n � 1)+2 and since 16n�1 = (16� 1)
�
16n�1 + :::+ 1

�
divisible

by 5 then 24n+1 = 5k + 2 for some natural k:
Hence, an = 35k+2+2 = 35k+2�9+11 = 9

�
35k � 1

�
+11 = 9

�
35k � 1

�
+11 =

9
�
35 � 1

� �
35(k�1) + :::+ 1

�
+ 11 = 18 � 112

�
35(k�1) + :::+ 1

�
+ 11:

Solution 3.(Academic)
Since by Little Fermat Theorem 310 � 1 (mod 11) and 24n � 1 (mod 5) (because

24 � 1 (mod 5)) yield 24n+1 � 2 (mod 10) then 24n+1 = 10k + 2 for some
k 2 N and, therefore, 324n + 2 = 310k+2 + 2 � 32 + 2 � 0 (mod 11) :
b) Since 23

4n+1

+ 3 = 23
4n+1 � 8 + 11 = 834n � 8 + 11 = 8

�
83

4n�1 � 1
�
+ 11

then 11 j bn () 11 j 834n�1 � 1:
Also note that 34n�1 =

�
34 � 1

� �
34(n�1) + 34(n�2) + :::+ 1

�
= 80

�
34(n�1) + 34(n�2) + :::+ 1

�
=

10k;
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where k := 8
�
34(n�1) + 34(n�2) + :::+ 1

�
:

Hence, 83
4n�1�1 = 230k�1 =

�
210
�3k�1 = �210 � 1� ��210�3k�1 + �210�3k�2 :::+ 1� =

1023�
��
210
�3k�1

+
�
210
�3k�2

:::+ 1
�
= 11�93

��
210
�3k�1

+
�
210
�3k�2

:::+ 1
�
:

c) Note that c0 = 13; c1 = 23
5

+5 = 2243+5 = 2243�8+13 = 8
�
2240 � 1

�
+

13 and 2240�1 divisible by 13 because 26 = 65�1 = 5 �13�1 implies 13 j 212�
1 and, therefore, 2240�1 =

�
212
�20�1 = �212 � 1� ��212�19 + �212�18 + :::+ 1� =

13k for some k 2 N:
We will prove that 13 j cn for any n 2 N:
Since 212 � 1 (mod 13) and 34n � 1 (mod 4) (because 32 � 1 (mod 4)) yield

34n+1 � 3 (mod 12) then 34n+1 = 12k + 3 for some k 2 N and, therefore,
cn = 2

34n+1 + 5 = 212k+3 + 5 � 23 + 5 � 0 (mod 13) :

Problem 1.9.

Suppose that 5n�1 is divisible by 4n�1 for some n 2 N:Since 4n�1
... 3 then

5n�1 is divisible by 3 as well, that is 5n � 1 (mod 3) () 2n � 1 (mod 3) ()

n � 0 (mod 2). So, n = 2k and, therefore, 52k� 1
... 42k� 1 () 25k� 1

... 16k�

1 =) 25k � 1
... 15 =) 25k � 1

... 5 () 1
... 5; that is contradiction.

Problem 1.10
Since anbn = cndn then WLOG we can assume that n = 1: Let k :=

gcd (d; b) and q :=
d

k
; p :=

b

k
then d = kq; b = kp; gcd (p; q) = 1 and since

ab = cd () a

c
=
d

b
=
q

p
then a = tq; c = tp:

Therefore, a2+b2+c2+d2 = t2q2+k2p2+t2p2+k2q2 =
�
p2 + q2

� �
k2 + t2

�
:

Problem 1-11
We will �nd rem10

�
24n+2

�
:Since 24n+2 � (�1)2n+1 (mod 5) () 24n+2 �

�1 (mod 5) () 24n+2 � 4 (mod 5) and 24n+2 � 0 (mod 2) then 24n+2 �
4 (mod 10) and, therefore, 53

4m � 224n+2 �
�
51 � 24

�
(mod 11) � 0 (mod 11) :

Problem 1.12
Suppose that for some natural n there is natural m such that

(n+ 1)
2
+ (n+ 2)

2
+ :::+ (n+ 1000)

2
= m2 ()

1000n2 + 2n (1 + 2 + :::+ 1000) + 12 + 22 + :::+ 10002 = m2 ()

1000n2 + n � 1000 � 1001 + 1000 � 1001 � 2001
6

= m2 ()
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1000n2 + n � 1000 � 1001 + 500 � 1001 � 667 = m2:

Since m2 divisible by 500 then m divisible by 50, that is m = 50k for some
k 2 N and, therefore,

1000n2 + n � 1000 � 1001 + 500 � 1001 � 667 = 2500k2 ()

2n2 + 2002n+ 1001 � 667 = 5k2 =) 2n2 + 2n+ 2 � 0 (mod 5) ()

4n2+4n+4 � 0 (mod 5) () (2n+ 1)
2 � 2 (mod 5) that is contradiction,

because there are no squares of integers which is congruent 2 by modulo 5.
Indeed, for r (mod 5) 2 f0;�1;�2g we have r2 (mod 5) 2 f0;�1g :

Problem 1.13
Let 2n+1 = q2; 3n+1 = p2:Since q2 odd then q = 2k+1 for some k 2 Z and,

therefore, 2n+ 1 = (2k + 1)2 () n = 2k (k + 1) :Hence, p2 = 3 � 2k (k + 1) +
1 = 6k2 + 6k+ 1 =) p is odd, that is p = 2t+ 1; for some integer t:Therefore,
p2 = 6k2 + 6k + 1 () (2t+ 1)

2
= 6k2 + 6k + 1 ()

2t (t+ 1) = 3k (k + 1) : Then 3n = 6k (k + 1) = 4t (t+ 1)
... 8 =) n

... 8:

Since p2+q2 = 5n+2 then p2+q2 � 2 (mod 5) ()
�
p2 � 1 (mod 5)
q2 � 1 (mod 5) =)

n = p2 � q2 � 0 (mod 5) :Thus, n
... 40:

Problem 1.14
Let S (n) be sum of digits of natural number n: Assume that there is a 2

N such that S
�
a2
�
= 1985: Then a2 � S

�
a2
�
(mod 3) � 1985 (mod 3) �

�1 (mod 3) but that isn�t possible because for any integer a we have a �
0;�1 (mod 3) =) a2 � 0; 1 (mod 3) :

Problem 1.15.
Let 2n + 4m = t2:Firstly we will prove that n 6= 2m: Suppose that n =

2m:Then 22m + 4m = t2 () 22m+1 = t2;that is the contradiction.
Consider case n < 2m:Then 2n + 4m = t2 () 2n

�
1 + 22m�n

�
= t2 =)�

n = 2p
t = 2pq

for some natural p and odd q:

Hence, 1 + 22(m�p) = q2 =) 22(m�p) < q2 < (1 + 2m�p)
2 () 2m�p <

q < 1 + 2m�p; that is the contradiction.
Let now n > 2m:Then 2n + 4m = t2 () 22m

�
1 + 2n�2m

�
= t2:Since

n can�t be even (because otherwise we get contradiction ) then n = 2p +
1 for some natural p � m and, therefore, 22m

�
1 + 22(p�m)+1

�
= t2 =)�

1 + 22(p�m)+1 = q2

t = 2mq
for some natural q:

Let l := p�m then l � 0 and 1+22l+1 = q2 () 22l+1 = (q � 1) (q + 1) ()
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8<: q � 1 = 2a
q + 1 = 2b

0 � a < b; a+ b = 2l + 1
=)

8<: q = 2b�1 + 2a�1

1 = 2b�1 � 2a�1
0 � a < b; a+ b = 2l + 1

()
�

q = 3
a = 1; b = 2; l = 1

:
Hence, m = p � 1; n = 2p + 1 and t = 3 � 2p�1;for any natural p;that is

22p+1 + 4p�1 =
�
3 � 2p�1

�2
:

Problem 1.16
a) Since ordp (n!) =

hn
2

i
+
h n
22

i
+ :::+

h n
2k

i
where k is such that n � 2k and

n < 2k then

ordp (n!) �
n

2
+
n

22
+ :::+

n

2k
=
n

2

�
1 +

1

2
+
1

22
+ :::+

1

2k�1

�
=

n

2
� 1� 1=2

k

1� 1=2 <
n

2
� 1

1� 1=2 = n

:

b) Since
(p� 1)n
pk

<
n

pk�1
; k = 1; 2; ::: then

�
(p� 1)n
pk

�
�
�
n

pk�1

�
and, therefore,

ordp (((p� 1)n)!) =
kmaxP
k=1

�
(p� 1)n
pk

�
� n+

kmaxP
k=2

�
n

pk�1

�
= n+ ordp (n!)

c) By Legendre formula ordp ((n!)!) =
kmaxP
k=1

�
n!

2k

�
; where 2kmax � n! and

2kmax+1 > n!

Since
n!

2k
=
(n� 1)!n
2k

� n
�
(n� 1)!
2k

�
then

�
n!

2k

�
� n

�
(n� 1)!
2k

�
and, there-

fore,

ordp ((n!)!) � n
kmaxP
k=1

�
(n� 1)!
2k

�
= n � ordp (((n� 1)!)!) = ordp ((((n� 1)!)!)n) :

d) Since ordp ((pn)!) =
kmaxP
k=1

�
n

pk

�
= n+

kmaxP
k=2

�
n

pk�1

�
= n+ ordp (n!)

then ordp

�
(pn)!

n!

�
= ordp ((pn)!)� ordp (n!) = n:

e) (n!)! � ((n� 1)!)n! () (n!)! �
�
n!

n

�n!
() (n!)!nn! � (n!)n! :

We will prove more general inequality m!nm � mm for any m;n 2 N; n � 3:
Math Induction by m 2 N;m � 3:
Let m = 1 then 1!n1 � 11 () n � 1;
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m = 2 then 2!n2! � 22 () 2n2 � 4 () n2 � 2;
m = 3 then 3!n3! � 33 () 6n6 � 27 () 2n6 � 9 holds for n � 3:
Instead step of MI we will use multiplicative reduction, that is we will prove

inequality

(1)
(m+ 1)!nm+1

m!nm
� (m+ 1)

m+1

mm
;m 2 N:

We have

(1) () (m+ 1)n � (m+ 1)
m+1

mm
() n � (m+ 1)

m

mm
() n �

�
1 +

1

m

�m
(= n > e >

�
1 +

1

m

�m
:

Applying inequality m!nm � mm for m = n!; n � 3 we obtain inequality
(n!)! � ((n� 1)!)n! for any n � 3:
If n = 1 then (1!)! � ((1� 1)!)1! () 1 = 1:

If n = 2 then (2!)! � ((2� 1)!)2! () 2 � 12 = 1 also holds.
So, (n!)! � ((n� 1)!)n! holds for any n 2 N:

Problem 1.17
a) Su¢ ce to prove that ordp ((n!)!) � ordp

�
(n!)

(n�1)!
�
= (n� 1)!�ordp (n!) for

any prime p:
By Legendre formula

ordp ((n!)!) =
kmaxP
k=1

�
n!

pk

�
; wherepkmax � n! andpkmax+1 > n!:

Since
n!

pk
=
(n� 1)!n
pk

� (n� 1)!
�
n

pk

�
then

�
n!

pk

�
� (n� 1)!

�
n

pk

�
and,

therefore,

ordp ((n!)!) � (n� 1)!
kmaxP
k=1

�
n

pk

�
= (n� 1)! � ordp (n!) = (n� 1)! � ordp (n!) :

b) Since
n!

pk
=
(n� 1)!n
pk

� n
�
(n� 1)!
pk

�
then

�
n!

pk

�
� n

�
(n� 1)!
pk

�
=)

ordp ((n!)!) � n
kmaxP
k=1

�
(n� 1)!
pk

�
= n � ordp ((n� 1)!) = ordp ( ((n� 1)!)!n) =)

(n!)!
... ((n� 1)!)!n:
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c)
nn

pk
= nn�1 � n

pk
� nn�1

�
n

pk

�
=)

�
nn

pk

�
� nn�1

�
n

pk

�
and, therefore,

ordp ((n
n)!) � nn�1ordp (n!) :

e)
nm+k

pi
= nk � n

m

pi
� nk

�
nm

pi

�
=)

�
nm+k

pi

�
� nk

�
nm

pk

�
and,therefore,

ordp
��
nm+k

�
!
�
� nk � ord (nm!)

f)
n �m
pi

� m
�
n

pi

�
=)

�
n �m
pi

�
� m

�
n

pi

�
and,therefore,

ordp ((n �m)!) � m � ordp (n!) :

g) First we will prove that ord2 ((2n)!) � ord2 (n!) + ord2 ((n+ 1)!) :
To prove that su¢ ce to prove inequalityh n

2k�1

i
�
h n
2k

i
+

�
n+ 1

2k

�
; k = 1; 2; :::; :

For k = 1 holds equality n =
hn
2

i
+

�
n+ 1

2

�
:

Let k > 1:Then
n

2k�1
=

1

2k�1

hn
2

i
+

1

2k�1

�
n+ 1

2

�
:

Since for any positive x and natural m we have

x

m
�
h x
m

i
() x � m

h x
m

i
=) [x] � m

h x
m

i
() [x]

m
�
h x
m

i
then

1

2k�1

hn
2

i
�
h n
2k

i
and

1

2k�1

�
n+ 1

2

�
�
�
n+ 1

2k

�
:

Hence,

n

2k�1
=

1

2k�1

hn
2

i
+

1

2k�1

�
n+ 1

2

�
�
h n
2k

i
+

�
n+ 1

2k

�
=)

h n

2k�1

i
�
h n
2k

i
+

�
n+ 1

2k

�
and, therefore, ord2 ((2n)!) � ord2 (n!) + ord2 ((n+ 1)!) :

Let now p > 2:Note that 2n � p

��
n

p

�
+

�
n+ 1

p

��
:Indeed, let n = lp +

r;where 0 � r � n � 1:If r < n � 1 then
�
n

p

�
=

�
n+ 1

p

�
= k and, there-

fore, p
��
n

p

�
+

�
n+ 1

p

��
= 2pk � 2pk + 2r = 2n:If r = p � 1 then

�
n

p

�
=
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k;

�
n+ 1

p

�
= k + 1 and, therefore,

p

��
n

p

�
+

�
n+ 1

p

��
= 2pk + p < 2pk + 2 (p� 1)

because 2 (p� 1) > p () p > 2:
Since

2n � p
��
n

p

�
+

�
n+ 1

p

��
=) 2n

pk
� 1

pk�1

�
n

p

�
+

1

pk�1

�
n+ 1

p

�

then applying inequality
[x]

m
�
h x
m

i
we obtain

2n

pk
� 1

pk�1

�
n

p

�
+

1

pk�1

�
n+ 1

p

�
� 2n

p
�
�
n

pk

�
+

�
n+ 1

pk

�
=)

�
2n

p

�
�
�
n

pk

�
+

�
n+ 1

pk

�
and, and, therefore,

ordp ((2n)!) � ordp (n!) + ordp ((n+ 1)!) :

Combinatorial solution.

Note that
(2n)!

n! (n+ 1)!
=

�
2n

n

�
n+ 1

: Since gcd (n; n+ 1) = 1 then
�
2n

n

�
... (n+ 1) i¤

n

�
2n

n

�
... (n+ 1) ()

n

�
2n

n

�
n+ 1

is integer. But,
n

�
2n

n

�
n+ 1

=

�
2n

n� 1

�
2 N:

h) (n+ 1) (n+ 2) ::: (n+m)
... m! for any n;m:

First solution is combinatorial:

(n+ 1) (n+ 2) ::: (n+m)

m!
=

�
n+m+ 1

m

�
:

Second solution.

Since
(n+ 1) (n+ 2) ::: (n+m)

m!
=
(n+m)!

n!m!
we will prove that

ordp

�
(n+m)!

n!m!

�
� 0 () ordp ((n+m)!) � ordp (n!) + ordp (m!) :

Since [x+ y] � [x] + [y] then
�
n+m

pk

�
�
�
n

pk

�
+

�
m

pk

�
and, therefore,

ordp ((n+m)!) � ordp (n!) + ordp (m!) :
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Problem 1.18

Since Sn =
n (n+ 1)

2
then Sn � 1 (mod 5) () n (n+ 1) � 2 (mod 5) ()

n2 + n� 2 � 0 (mod 5) () (n+ 2) (n� 1) � 0 (mod 5) ()�
n+ 2 � 0 (mod 5)
n� 1 � 0 (mod 5) ()

�
n � �2 (mod 5)
n � �4 (mod 5) :

Thus, n = 5k � 2; k 2 N or n = 5k � 4; k 2 N:
Another variant of solution:
Since 5 is prime then

Sn � 1
5

2 Z () n (n+ 1)� 2
2 � 5 2 Z =) n (n+ 1)� 2

5
2 Z () (n+ 2) (n� 1)

... 5 ()

24 n+ 2
... 5

n� 1
... 5

()

24 n+ 2
... 5

n+ 4
... 5

()
�
n = 5k � 2; k 2 N
n = 5k � 4; k 2 N :

Problem 1.19
Let an :=

�p
3 + 1

�2n
+
�p
3� 1

�2n
=
�
4 + 2

p
3
�n
+
�
4� 2

p
3
�n
: Then

an satisfy to the recurrence an+1 � 8an + 4an�1 = 0 and a0 = 2; a1 = 8:So,
an is integer for all n 2 N. Since

�
4� 2

p
3
�n 2 (0; 1) then from representation�p

3 + 1
�2n

= an �
�p
3� 1

�2n
and

�p
3 + 1

�2n 2 (an � 1; an) follows that
an =

l�p
3 + 1

�2nm
(dxe is ceiling of x)

We see that an
... 2n+1 for n = 0; 1:From supposition an

... 2n+1; an�1
... 2n and

an+1 = 8an � 4an�1 = 4 (2an � an�1) immediately follows that an+1
... 2 � 2n:

Let now bn :=
an
2n+1

then b0 = 1; b1 = 2 and bn+1 = 4bn � bn�1:
Since bn+1 � bn�1 (mod 2) then b2m � 1 (mod 2) and ord2 (a2m) = 2m+ 1:
( a2m = 22m+1b2m;where b2m odd for any m 2 N[f0g :)

2. Diophantine equation.

Problem 2.1
We will solve equation

y =
3x�

p
9x2 + 160x+ 800

16
() 9x2 + 160x+ 800 = (3x� 16y)2 ()

5x+ 3xy � 8y2 + 25 = 0 () x =
8y2 � 25
3y + 5

:
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Note that

gcd
�
8y2 � 25; 3y + 5

�
= gcd

�
y2 + 15y + 25; 3y + 5

�
= gcd

�
3y2 + 45y + 75; 3y + 5

�
=

gcd (40y + 75; 3y + 5) = gcd (y + 10; 3y + 5) = gcd (y + 10; 25) 2 f1; 5; 25g :

Since x is integer i¤ gcd (y + 10; 25) = j3y + 5j then possible three options:
j3y + 5j = 1 () y = �2; j3y + 5j = 5 () y = 0 and j3y + 5j =

25 () y = �10:
Hence for y = �2 we obtain x = 8 � 4� 25

�6 + 5 = �7;for y = 0 we obtain x = �5

and for y = �6 we obtain x = 8 � 100� 25
3 � (�10) + 5 = �31:

So,
3x�

p
9x2 + 160x+ 800

16
is integer only for x = �5;�7;�31:

Problem 2.2
Since x � x�2y (mod 2) then equation x2�2xy = 1978 have no sulutions in

integers (x; y) with odd x because then x2 � 2xy = x (x� 2y) is odd, and
have no integer sulutions (x; y) with even x because then x2 � 2xy is divisible
by 4 but 1978 isn�t divisible by 4:

Problem 2.3
Note that 2m2 +m = 3n2 + n can be rewritten as

2m2 � 2n2 +m� n = n2 () (m� n) (2m+ 2n+ 1) = n2

and as

3m2 � 3n2 +m� n = m2 () (m� n) (3m+ 3n+ 1) = m2:

Note that if m�n is a perfect square then it immediatelly imply that 2m+
2n+1; 3m+3n+1 are perfect squares as well. Thus, su¢ ces to prove thatm�n is
a perfect square for any natural n;m that satis�es to equation 2m2+m = 3n2+n:

Since 2m2+m = 3n2+n () m (2m+ 1) = n (3n+ 1) () m

n
=
3n+ 1

2m+ 1
:

Let
a

b
be irredusible fraction such that

3n+ 1

2m+ 1
=
m

n
=
a

b
:

Then
m

n
=

a

b
and

3n+ 1

2m+ 1
=

a

b
()

�
bm� an = 0

3bn� 2am = a� b ()8><>:
n =

ab� b2
3b2 � 2a2

m =
a2 � ab
3b2 � 2a2

.

Since d
�
3b2 � 2a2; a2 � ab

�
= d

�
3b2 � 2ab; a2 � ab

�
= d (3b� 2a; a� b) =

d (b; a� b) = d (b; a) = 1 and similarly d
�
3b2 � 2a2; a2 � ab

�
= 1 then n;m 2

Z i¤
��3b2 � 2a2�� = 1:
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But 3b2 � 2a2 = �1 have no solutions because

3b2 � 2a2 = �1 =) a2 � �1 (mod 3)

and that isn�t possible:
So, remainse 3b2 � 2a2 = 1 which have in�nitely many integer solutions.
Since all integer solutions of equation 2m2+m = 3n2+n can be represented

in the form
(m;n) =

�
a2 � ab; ab� b2

�
where a; b be any coprime numbers satisfying

3b2 � 2a2 = 1
then m� n = a2 � ab�

�
ab� b2

�
= (a� b)2 :

Problem 2.4
Let (x; y; z) 6= (0; 0; 0) is integer solution of equation x3�2y3�4z3 = 0: Since

x divisible by 2 then x = 2x1 then

8x31 � 2y3 � 4z3 = 0 () 4x31 � y3 � 2z3 = 0 =) y
... 2 () y = 2y1 =)

4x31 � 8y31 � 2z3 = 0 () 2x31 � 4y31 � z3 = 0 =) z = 2z1 =)

2x31 � 4y31 � 8z31 = 0 () x31 � 2y31 � 4z31 = 0:

Thus, starting with non-zero solution (x; y; z) we obtain new non-zero so-

lution (x1; y1; z1) =
1

2
(x; y; z) : Similarly from (x1; y1; z1) we obtain integer

non-zero solution (x2; y2; z2) =
1

2
(x1; y1; z1) and so on.....from (xn; yn; zn) 6=

(0; 0; 0) we obtain (xn+1; yn+1; zn+1) =
1

2
(xn; yn; zn) ; n 2 N:Hence, (xn; yn; zn) =

1

2n
(x; y; z) be triple of integer numbers for any natural n:Since jxj+ jyj+ jzj 2

N and (xn; yn; zn) 6= 0 for any n then jxnj + jynj + jznj =
jxj+ jyj+ jzj

2n
is

in�nite strictly decreasing sequence of natural numbers.
And that is the contradiction to Well Ordering Principle: Any non empty

subset of natural numbers has the smallest element. So, equation x3�2y3�4z3 =
0 have no non-trivial ineger solution.

Problem 2.5
We will �nd a solution in the form (x; y; z) =

�
2n; 2m; 2k

�
:By sbstitution in

equation we obtain 23n+1 + 25m = 27k and we claim

�
3n+ 1 = 5m
5m+ 1 = 7k

()
�
3n+ 2 = 7k
5m+ 1 = 7k

()
�
7k � 2 (mod 3)
7k � 1 (mod 5) :
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We have�
7k � 2 (mod 3)
7k � 1 (mod 5) ()

�
k � 2 (mod 3)
2k � 1 (mod 5) ()

�
k � 2 (mod 3)
2k � �4 (mod 5) ()

�
k � 2 (mod 3)
k � �2 (mod 5) ()

�
k � 2 (mod 3)
k � 3 (mod 5) ()

�
5k � 10 (mod 15)
3k � 9 (mod 15) () 2k � 1 (mod 15) ()

k � 8 (mod 15) () k = 15t+ 8; t 2 Z:
Then, 3n + 2 = 7k + 8 () 3n = 105t + 54 () n = 35t + 18 and

5m+ 1 = 7k + 8 () 5m = 105t+ 55 () m = 21t+ 11; t 2 Z:
Thus, (x; y; z) =

�
235t+18; 221t+11; 215t+8

�
is solution of equation 2x3+y5 =

z7 for any natural t:
Indeed, 2 �

�
235t+18

�3
+
�
221t+11

�5
= 2105t+55 + 2105t+55 = 2105t+56 =�

215t+8
�7
:

Problem 2.6 (44.Met.Rec)
We will �nd a solution in the form (x; y; z; t; u; v) = (t; t; t; t; 2v; v) :By sbsti-

tution in equation we obtain 4t3 = 16v4 � v4 () 4t3 = 15v4: If we can prove
that equation 4t3 = 15v4 has in�nitely many natural solutions then original
equation has in�nitely many natural solutions as well.
We will �nd a solution of equation 4t3 = 15v4 in the form (t; v) =

�
4a15b; 4c15d

�
; a; b; c; d 2

N:
Then 4t3 = 15v4 becomes 43a+1153b = 44c154d+1 ()

�
3a+ 1 = 4c
3b = 4d+ 1

:

We have

3a+ 1 = 4c () 4c� 3a = 1 () 4 (c� 1) = 3 (a� 1) ()�
c� 1 = 3p
a� 1 = 4p ; p 2 Z ()

�
c = 3p+ 1
a = 4p+ 1

; p 2 Z:

In particular;
�
c = 3p� 2
a = 4p� 3 ; p 2 N give us in�nitely many natural a; c:

Similarly, 3b = 4d + 1 () 3 (b+ 1) = 4 (d+ 1) ()
�
b = 4q � 1
d = 3q � 1 ; q 2

Z and, in particular,
�
b = 4q � 1
d = 3q � 1 ; q 2 N give us in�nitely many natural b; d:

Thus, (t; v) =
�
44p�3154q�1; 43p�2153q�1

�
:p; q 2 N give us in�nitely many

natural solutions (t; v) of equation 4t3 = 15v4:Indeed, 4 �
�
44p�3154q�1

�3
=

412p�81512q�3 and 15 �
�
43p�2153q�1

�4
= 412p�81512q�3:

Problem 2.7
From experience of solutions to problems 2.5,2.6 where we used that all

exponents are totaly coprime, can be impression that this equation have no
natural solutions becuase all exponents
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aren�t totaly coprime. But it isn�t so. Here we can use another idea of
solution.

We will �nd natural solution represented the form (x; y; z; t) =
�
az3; bz2; z; cu

�
:

For such (x; y; z; t) equation becomes
�
a4 + b6 + 1

�
z12 = c4u4 and we claim

a4 + b6 + 1 be 4-th degree of some natural number: Easy to see that a =
2; b = 2 satisfy this requirement. Then for (x; y; z; t) =

�
2z3; 2z2; z; cu

�
we

have 81z12 = c4u4 () 3z4 = cu:Thus, we obtain in�nitely many natural
solutions of equation x4 + y6 + z12 = t4 represented by quads (x; y; z; t) =�
2z3; 2z2; z; 3z4

�
; z 2 N:

Problem 2.8
a),b),c)
Since for any integer number a can be represented in the form a = 3k +

r where r 2 f0; 1;�1g then a3 = 27k3 + 27k2r + 9kr2 + r3 and, therefore,
a3 � r3 (mod 9) for any a 2 Z: Thus, since r 2 f0; 1;�1g then r3 2 f0; 1;�1g as
well. Hence, for x; y; z 2 Z we have x = 3k + p; y = 3l + q; z = 3m + r; where
p; q; r 2 f0; 1;�1g and, therefore, x3+ y3 � p3+ q3 (mod 9) and x3+ y3+ z3 �
p3 + q3 + r3 (mod 9) where �2 � p3 + q3 � 2 and �3 � p3 + q3 + r3 �
3:Thus, x3 + y3 � �4 (mod 9) ; x3 + y3 � �3 (mod 9) and x3 + y3 + z3 �
�4 (mod 9) impossible.

d) Since 117
... 9 then x3 + 117y3 = 5 =) x3 � 5 (mod 9) =) x3 �

2 (mod 3) =) x3 � 8 (mod 9) ;
but 5 isn�t congruence to 8 by modulo 9.
Remark.(Just in case).
Since x3+y3+ z3 = 3xyz+(x+ y + z)3�3 (x+ y + z) (xy + yz + zx) then
x3 + y3 + z3 � x+ y + z (mod 3) :)

Problem 2.9
Since

3a = x2+2y2 =) x2+2y2 � 0 (mod 3) () x2 � y2 (mod 3) () jxj � jyj (mod 3) ()

then �
x � 0 (mod 3) ; y � 0 (mod 3)

x � � (mod 3) ; y � � (mod 3) where j�j = j�j = 1

Case1. Let x � 0 (mod 3) ; y � 0 (mod 3) : Then x = 3p; y = 3q; p; q 2 Z and,
therefore, 3a = 9p2 + 18q2 () a = 3

�
p2 + 2q2

�
:

Note that
�
n2 + 2m2

� �
p2 + 2q2

�
= n2p2 + 4m2q2 + 2n2q2 + 2m2p2 =

n2p2+4nmpq+4m2q2+2n2q2�4nmpq+2m2p2 = (np+ 2mq)
2
+2 (nq �mp)2 :

Since 3 = 1 + 2 � 1 then a = 3
�
p2 + 2q2

�
= (p+ 2q)

2
+ 2 (q � p)2 :

Case 2. Let x � � (mod 3) ; y � � (mod 3) ; that is x = 3p+�; y = 3q+� where
j�j = j�j = 1:Then 3a = x2 + 2y2 () 3a = (3p+ �)

2
+ 2 (3q + �)

2
=
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9p2 + 6p� + 18q2 + 12q� + 2�2 + �2 = 9p2 + 6p� + 18q2 + 12q� + 3 =)
a = 3p2 + 6q2 + 2 (p� + 2q�) + 1 = 3p2�2 + 6q2�2 + 2 (p� + 2q�) + 1 =
p2�2 + 4q2�2 + 4pq�� + 2 (p� + 2q�) + 1 + 2p2�2 � 4pq�� + 2q2�2 =
(p� + 2q�)

2
+2 (p� + 2q�)+1+2 (p� � 2q�)2 = (p� + 2q� + 1)2+2 (p� � 2q�)2 :

Problem 2.10
Let

a

b
and

c

d
be irredusible fractions for which equation y = x2 +

a

b
x+

c

d
in

integer x; y is solvable in integer x; y: Since
bc

d
= by � bx2 � ax 2 Z and

gcd (c; d) = 1 then b
... d; that is b = kd:

Since,
�
y � x2

�
d � c = adx

b
=
adx

kd
=
ax

k
and gcd (a; b) = 1 =)

gcd (a; k) = 1 then x = kt for some integer t:Hence,

y = x2 +
a

b
x+

c

d
() y = k2t2 +

akt

kd
+
c

d
() y � k2t2 = at+ c

d
:

Since gcd (c; d) = 1 and
at+ c

d
2 Z yield gcd (a; d) = 1 (because otherwice;if

gcd (a; d) = p 6= 1) then
at+ c

d
2 Z =) at+ c

p
2 Z =) c

p
2 Z ()

gcd (c; p) = p 6= 1:
But gcd (c; d) = 1 =) gcd (c; p) = 1:That is contradiction.
Thus, we obtain the following necessity condition for irreducible fractions

a

b
and

c

d
:

1. b = kd; for some integer k;
2. gcd (a; d) = 1:

Let
a

b
and

c

d
be irredusible fractions such that b = kd; for some integer k and

gcd (a; d) = 1:
Then equation at+ c � 0 (mod d) have in�nitely many solutions in integer

t because gcd (a; d) = 1:
Let t be any such solution.Then for x = kt we have

x2 +
a

b
x+

c

d
= k2t2 +

akt

kd
+
c

d
= k2t2 +

at+ c

d
2 Z:

FProblem 2.11(3932 CRUX)
Let x; y be natural solution of equation x2 � 14xy + y2 � 4x = 0:
Since x � y (mod 2) and

x2�14xy+y2�4x = 0 () y2�14xy+49x2 = 4
�
12x2 + x

�
() (y � 7x)2 = 22

�
12x2 + x

�
then 12x2+x =

�
y � 7x
2

�2
; that is12x2+x is the perfect square of integer

number:
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Therefore, pair (u; v) =
�
x;

����y � 7x2
����� is positive integer solution of equa-

tion 12u2 + u = v2: Opposite, let (x; z) is positive integer solution of equation
12x2 + x = z2:
Then x and y = 7x� 2z satisfy to equation x2 � 14xy + y2 � 4x = 0:
Solving equation 12x2 + x = z2 in natural numbers.
Let k := gcd (z; x) and let a :=

z

k
; b :=

x

k
then 12x2 + x = z2 ()

12x+ 1

z
=
z

x
=
a

b
()�

ax� bz = 0
12bx� az = �b ()

8><>:
x =

b2

a2 � 12b2
z =

ab

a2 � 12b2
; where a; b

Since gcd
�
a2 � 12b2; b2

�
= gcd

�
a2; b2

�
= 1 then x can be integer only if��a2 � 12b2�� = gcd �a2 � 12b2; b2� = 1:

But since a2 + 1 for any integer a isn�t divisible by 3 then equation a2 �
12b2 = �1 () a2 + 1 = 12b2 have no integer solutions. Thus, remains only
equation a2 � 12b2 = 1. Since a2 � 12b2 = 1 implies that a; b are relatively
prime then any natural solution (a; b) of Pell equation a2 � 12b2 = 1 induce
natural solution (x; z) =

�
b2; ab

�
of equation 12x2 + x = z2;that is

S :=
�
(x; z) j x; z 2 N and 12x2 + x = z2

	
=
��
b2; ab

�
j a; b 2 N and a2 � 12b2 = 1

	
:("Pell parametrization" of all natural solutions of equation 12x2 + x = z2).
Note that (a; b) = (7; 2) is smallest natural solution of a2 � 12b2 = 1 and,

therefore, �
(a; b) j a; b 2 N and a2 � 12b2 = 1

	
= f(an; bn)gn�1 ;

where both an and bn satisfy to the same recurrence rn+2 � 14rn+1 +
rn = 0; n 2 N with di¤erent initial conditions a1 = 7; a2 = 97; b1 = 2; b2 =
28:Let �n := 7bn � 2an; n 2 N then �n+2 � 14�n+1 + �n = 0; n 2 N and
�1 = 0; �2 = 7 � 28� 2 � 97 = 2:
Since �2 = 2; �2� �1 > 0 and �n+2� �n+1 = �n+1� �n+12�n then by Math

Induction �n > 0 for any n > 1 and �n+1 > �n for any n 2 N:
Hence 7b21 � 2a1b1 = 0 and 7b2n � 2anbn = bn�n > 0 for any n > 1:
So, all pairs (x; y) =

�
b2; 7b2 � 2ab

�
where (a; b) be any solution of Pell equa-

tion a2 � 12b2 = 1 in natural numbers, excluding solution, indused by (a; b) =
(2; 7) and y = 7b2� 2ab; represent all natural solutions of equation x2� 14xy+
y2 � 4x = 0:
Then gcd (x; y) = gcd

�
b2; 7b2 � 2ab

�
= b gcd (b; 7b� 2a) = b gcd (b; 2a) =

b gcd (b; 2) = 2b(because all bn are even) and, therefore, gcd
2 (x; y) = 4x2:
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Problem 2.12
So, we have to solve equation 16x+ 17y + 21z = 185; x; y; z 2 N [ f0g :
Let u := x+y; n := 185�21z then equation becames 16u+y = n;where u �

y � 0 and 0 � z � 8 because 185 � 21z � 0 () z � 8:Let t := 8 � z:Then
n = 17 + 21t; 0 � t � 8; z = 8� t:Since y = n� 16u then 0 � y � u () 0 �
n� 16u � u ()

�
n+ 16

17

�
� u �

h n
16

i
:

Noting that n � 185 =) n < 256 () n+ 16

17
>
n

16
we conclude that

equation 16u + y = n have integer solution (u; v) such that u � y � 0 i¤�
n+ 16

17

�
=
h n
16

i
; that is i¤ for t 2 f0; 1; :::; 8g holds

(1) �
33 + 21t

17

�
=

�
17 + 21t

16

�
:

Then for each such t we have n = 17 + 21t; u =
h n
16

i
; y = 16

n n
16

o
; x =

u� y; z = 8� t:0BBBBBBBBBBBBBBBB@

t� n

�
n+ 16

17

� h n
16

i
u y x z

0 17 1 1 1 1 0 8
1 38 3 2
2 59 4 3
3 80 5 5 5 0 5 5
4 101 6 6 6 5 1 4
5 122 8 7
6 143 9 8
7 164 10 10 10 4 6 1
8 185 11 11 11 9 2 0

1CCCCCCCCCCCCCCCCA
:

Thus, minimal number of boxes provide solution (x; y; z) = (0; 1; 8) :
Remark.
Intuitively, it is clear that the larger the capacity of the boxes involved in

terms of transportation
for a given volume of cargo, the smaller number of boxes needed.
Hereof, maximal value of z which provide solvability of equation 16x+17y+

21z = 185
in nonnegative integer x; y at the same time provide mimimal value of cor-

respondent
sum x+y+z: For z = 8 we we have 16x+17y+21�8 = 185 () 16x+17y =

17 ()
�
x = 0
y = 1

:

So, solution (x; y; z) = (0; 1; 8) provide minimal number of boxes which is
9.
This intuitive and plausible reasoning leads to the following elegant solution:
Solution 2.
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Let t := x+y+z:So, we should minimise t for nonnegative integer x; y; z that
satisfy
16x+ 17y + 21z = 185:
Note that 185 � 21z = 16x + 17y � 0 =) 185 � 21z � 0 () z �

185

21

z2Z() z �
�
185

21

�
= 8:

Also note that 185 = 16x + 17y + 21z = 21t � 4y � 5x =) 21t = 185 +
4y + 5x � 185 =)
t � 185

21

z2Z() t �
�
185 + 20

21

�
= 9:From the other hand for t = 9 we obtain

system of equations

(2)
�
16x+ 17y + 21z = 185

x+ y + z = 9
()

�
y + 5z = 185� 16 (x+ y + z)

x+ y + z = 9
()

�
y + 5z = 185� 16 � 9

x+ y + z = 9
()

�
y + 5z = 41

x = 9� (y + z)
:
Since x � 0 () y + z � 9 and y = 41 � 5z then (41� 5z) + z � 9 ()

4z � 32 () z � 8:
Thus, 8 � z � 8 () z = 8 =) y = 1 =) x = 0:

Problem 2.13
Since z = 10n � 5x � 2y and z � 0 then number of non-negative integer

solutions of equation 5x + 2y + z = 10n equal to the number of non-negative
integer solutions of inequality 5x+ 2y � 10n:

Then
�
5x+ 2y � 10n
x; y � 0 ()

8<: 0 � y �
�
10n� 5x

2

�
0 � 10n� 5x; x � 0

()

8<: 0 � x � 2n

0 � y �
�
5 (2n� x)

2

�
:

Since for each x 2 f0; 1; :::; 2ng number of pairs (x; y) equal to
�
5 (2n� x)

2

�
+

1 then number of non-negative integer solutions of equation 5x + 2y + z =
10n equal to the sum

2nP
x=0

��
5 (2n� x)

2

�
+ 1

�
= 2n+ 1 +

2nP
k=0

�
5k

2

�
= 2n+ 1 +

2nP
k=0

��
k

2

�
+ 2k

�
=

2n+ 1 +
2nP
k=0

�
k

2

�
+

2nP
k=0

2k = 2n+ 1 + 2n (2n+ 1) +
2nP
k=0

�
k

2

�
=

4n2 + 2n+ 1 +
nP
i=1

�
2i

2

�
+

nP
i=1

�
2i� 1
2

�
= 4n2 + 2n+ 1 +

nP
i=1

i+
nP
i=1

(i� 1) =

4n2 + 2n+ 1 +
nP
i=1

(2i� 1) = 4n2 + 2n+ 1 +
nP
i=1

�
i2 � (i� 1)2

�
=
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4n2 + 2n+ 1 + n2 = 5n2 + 2n+ 1:

3. Integer and fractional parts.

Problem 3.1
By Power Mean Inequality we have 

3
p
2 + 3

p
4

2

!3
<
2 + 4

2
()

�
3
p
2 +

3
p
4
�3
< 24:

We try to prove that
�
3
p
2 + 3

p
4
�3
> 23: Since

�
3
p
2 + 3

p
4
�3
= 6+6

�
3
p
2 + 3

p
4
�
then�

3
p
2 + 3

p
4
�3
> 23 () 6

�
3
p
2 + 3

p
4
�
> 17 () 12 3

p
2 + 12 3

p
4 > 34.

Note that 12 3
p
2 = 3

3
p
27 = 3 3

p
128 > 3 3

p
125 = 15: Thus remains to prove

12 3
p
4 > 19 () 33�28 > 193:We have 193 = (20� 1) 3 = 8000�1200+60�1 =

6859 and 33 � 28 = 9 � 256 � 3 = 9 � 768 = 7680� 768 = 6912 > 6859:
Another proof of inequality 3

p
2 + 3

p
4 >

17

6
:

Let x := 3
p
2+ 3
p
4 then

�
3
p
2 + 3

p
4
�3
= 6+6

�
3
p
2 + 3

p
4
�
() x3 = 6x+6: So,

x > 2 is root of cubic equation x3 � 6x� 6 = 0: Let p (x) := x3 � 6x� 6:
Note that p (x) " [

p
2;1):Indeed, let

p
2 � x1 < x2:Then p (x2) � p (x1) =

x32�x31�6 (x2 � x1) = (x2 � x1)
�
x22 + x2x1 + x

2
1 � 6

�
> 0;because x21 � 2; x2x1 >

2; x22 > 2: Also, note then p
�
17

6

�
=
173

63
� 23 < 0: Since

17

6
>
p
2 and

p (x) " [
p
2;1) then x > 17

6
(From supposition

p
2 < 2 < x <

17

6
follows

0 = p (x) < p

�
17

6

�
;that is the contradiction).

Problem-3.2
a) We haveh�p
n+

p
n+ 1 +

p
n+ 2

�2i
=
h
3n+ 3 + 2

p
n (n+ 1) + 2

p
n (n+ 2) + 2

p
(n+ 1) (n+ 2)

i
=

3n+ 3 +
h
2
p
n (n+ 1) + 2

p
n (n+ 2) + 2

p
(n+ 1) (n+ 2)

i
:

Since by 2-AM-GM Inequality 2
p
n (n+ 1) < n+(n+ 1) = 2n+1; 2

p
n (n+ 2) <

n+(n+ 2) = 2n+2; 2
p
(n+ 1) (n+ 2) < (n+ 1)+ (n+ 2) = 2n+3 (we wrote

< instead � because condition of equality in AM-GM Inequality is not
ful�lled) we obtain

2
p
n (n+ 1) + 2

p
n (n+ 2) + 2

p
(n+ 1) (n+ 2) < 6n+ 6

:
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(Or, since 2
p
n (n+ 1) =

p
4n2 + 4n <

p
4n2 + 4n+ 1 = 2n+1; 2

p
n (n+ 2) =p

4n2 + 8n <
p
4n2 + 8n+ 4 = 2n+1 and 2

p
(n+ 1) (n+ 2) =

p
4n2 + 6n+ 8 <p

4n2 + 12n+ 9 = 2n+3 then 2
p
n (n+ 1)+2

p
n (n+ 2)+2

p
(n+ 1) (n+ 2) <

6n+ 6)
We will �nd lower bound for 2

p
n (n+ 1)+2

p
n (n+ 2)+2

p
(n+ 1) (n+ 2) using

3-AM-GM Inequality again, namely,

p
n (n+ 1)+

p
n (n+ 2)+

p
(n+ 1) (n+ 2) > 3

3

qp
n (n+ 1) �

p
n (n+ 2) �

p
(n+ 1) (n+ 2) =

3 6
p
n (n+ 1) � n (n+ 2) � (n+ 1) (n+ 2) = 3 3

p
n (n+ 1) (n+ 2):

Note that n (n+ 1) (n+ 2) = n3 + 3n2 + 2n � (n+ 5=6)
3 for any n �

2: Indeed,

n3 + 3n2 + 2n� (n+ 5=6)3 = n2

2
� n

12
� 125
216

=
n

12
(6n� 1)� 125

216
�

n

12
(6 � 2� 1)� 125

216
� 11

12
� 2� 125

216
=
11

6
� 125
216

> 0:

Hence,

2
p
n (n+ 1) + 2

p
n (n+ 2) + 2

p
(n+ 1) (n+ 2) > 2 � 2 (n+ 5=6) = 6n+ 5:

Since

6n+ 5 < 2
p
n (n+ 1) + 2

p
n (n+ 2) + 2

p
(n+ 1) (n+ 2) < 6n+ 6

then h
2
p
n (n+ 1) + 2

p
n (n+ 2) + 2

p
(n+ 1) (n+ 2)

i
= 6n+ 5

and, therefore, h�p
n+

p
n+ 1 +

p
n+ 2

�2i
= 9n+ 8:

b) Since* [
p
x] =

hp
[x]
i
then, using a) we obtain

�p
n+

p
n+ 1 +

p
n+ 2

�
=

�q�p
n+

p
n+ 1 +

p
n+ 2

�2�
=

"rh�p
n+

p
n+ 1 +

p
n+ 2

�2i#
=
�p
9n+ 8

�
:

Appendix.
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Let p := [
p
x] thenp � 0 and p �

p
x < p+ 1 () p2 � x < (p+ 1)2 :Since

p2 is integer lower bound for x and [x] is biggest integer lower bound for x then
p2 � [x] � x < (p+ 1)2 =) p2 � [x] < (p+ 1)2 =) p �

p
[x] < p + 1 ()hp

[x]
i
= p:

Problem 3.3

Obviously that x 6= 0 and easy to see that x =2 Z because otherwice
�
1

x

�
= 1;

i.e. contradiction. Denoting n := [x] +
�
1

x

�
+ 1 we obtain that if x is solution

of equation fxg +
�
1

x

�
= 1 then x =2 Z and for some integer n this x satisfy

equation x+
1

x
= n: Moreover, since jxj 6= 1 then jnj =

����x+ 1

x

���� = jxj+ 1

jxj > 2 :

Let now n is integer such that jnj > 2 then equation x +
1

x
= n ()

x2 � nx + 1 = 0 have two irrational solutions x =
n+

p
n2 � 4
2

or x =

n�
p
n2 � 4
2

= and for each we have

fxg+
�
1

x

�
= fxg+ fn� xg = fxg+ f�xg = 1:

Thus all solution of equation fxg +
�
1

x

�
= 1 can be represented in form

x =
n�

p
n2 � 4
2

; where n 2 Z and jnj > 2:
�

Problem 3.4.
Let Sn :=

�
(a; b) j a; b 2 N� f1g and ab � n

	
. Note that ab � n () a �

b
p
n () a � [ b

p
n] : For any b 2 f2; 3; :::; ng letAb := fa j a 2 N� f1g and a � [ b

p
n]g : Then

Sn =
nS
b=2

Ab � fbg and, therefore, jSnj =
nP
b=2

jAbj =
nP
b=2

([ b
p
n]� 1) =

nP
b=2

[ b
p
n]�

(n� 1) :
Note that ab � n () b � loga n () b � [loga n] : For any a 2

f2; 3; :::; ng let Ba := fb j b 2 N� f1g and b � [loga n]g :Then Sn =
nS
b=2

fag �

Ba and, therefore, jSnj =
nP
a=2

jBaj =
nP
b=2

([loga n]� 1) =
nP
b=2

[[loga n]]�(n� 1) :Thus,
nP
b=2

[[loga n]]� (n� 1) =
nP
b=2

[ b
p
n]� (n� 1) ()

nP
a=2

[loga n] =
nP
b=2

[ b
p
n] :

FProblem 3.5 (CRUX #3095)
Consider two cases:

1. Let
�
c+ pb

q

�
� a; then p

�
c+ pb

q

�
� pa and we have inequality

c
1985-2018 Arkady Alt 48



Math Olympiads Training- Problems and solutions.

�
c+ pb

q

�
� c+ pb

q
() c+ pb� q

�
c+ pb

q

�
� 0:

Thus

c+ p (a+ b)

p+ q
�
�
c+ pb

q

�
=

c+ pa+ pb� (p+ q)
�
c+ pb

q

�
p+ q

=

�
pa� p

�
c+ pb

q

��
+

�
c+ pb� q

�
c+ pb

q

��
p+ q

� 0

:

So, we obtain inequality
�
c+ pb

q

�
� c+ p (a+ b)

p+ q
; which implies

�
c+ pb

q

�
��

c+ p (a+ b)

p+ q

�
:

2. Let
�
c+ pb

q

�
� a; then c+ pb� qa � 0 and consequently

�
c+ p (a+ b)

p+ q

�
=

�
c+ pb� qa+ a (p+ q)

p+ q

�
= a+

�
c+ pb� qa
p+ q

�
� a:

Problem 3.6
a. Let p :=

�
n
p
2
�
then p < n

p
2 < p+ 1( n

p
2 6= p because

p
2 =2 Q) andn

n
p
2
o
= n

p
2� p = 2n2 � p2

n
p
2 + p

>
2n2 � p2

2n
p
2

� 1

2n
p
2

because p < n
p
2 =) p2 < 2n2 () 1 � 2n2 � p2

b. We will consider now natural n such that 2n2 � 1 be a perfect square
(for example n = 1; 5) that is we will �nd all pairs (n; p) of natural numbers
such that 2n2 � p2 = 1:

Let (n; p) be such pair. Then 2n2 = p2 + 1 < (p+ 1)
2 and, therefore,

p2 < 2n2 < (p+ 1)
2 () p < n

p
2 < p+ 1 ()

�
n
p
2
�
= p:

Also, since 1 =
�p
2 + 1

�2 �p
2� 1

�2
=
�
3 + 2

p
2
� �
3� 2

p
2
�
then 1 = 2n2�

p2 =
�
n
p
2 + p

� �
n
p
2� p

�
=
�
n
p
2 + p

� �
3 + 2

p
2
� �
n
p
2� p

� �
3� 2

p
2
�
=
�
(3n+ 2p)

p
2 + 4n+ 3p

� �
(3n+ 2p)

p
2� (4n+ 3p)

�
=

2 (3n+ 2p)
2 � (4n+ 3p)2 :

Thus, (3n+ 2p; 4n+ 3p) is natural solution of equation 2x2 � y2 = 1 and
starting from solution (1; 1) we obtain in�nite sequence (n1; p1) ; (n2; p2) ; :::; (nk; pk) ; :::of
natural solutions of equation 2x2 � y2 = 1 de�ned recursively as follows

(1)
�
nk+1 = 3nk + 2pk
pk+1 = 4nk + 3pk

; k 2 N andn1 = p1 = 1:
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Since nk+1 > 3nk () nk+1
3k+1

>
nk
3k
; k 2 N and then nk+1

3k+1
>
n1
31
=
1

3
=)

nk+1 > 3
k; k 2 N =) nk � 3k�1; k 2 N:(Similarly pk � 3k�1).

Recall that pk =
�
nk
p
2
�
:Then

�
nk
p
2
	
= nk

p
2� pk =

1

nk
p
2 + pk

and

1

nk
p
2 + pk

� 1

2nk
p
2
=

nk
p
2� pk

2nk
p
2
�
nk
p
2 + pk

� = 1

2nk
p
2
�
nk
p
2 + pk

�2 <
1

2nk
p
2
�
3k�1

p
2 + 3k�1

�2 = 1

2nk
p
2
� 1

32(k�1)
�
2
p
2 + 3

� < 1

2nk
p
2
� 1

32k�1
:

Since for any positive real " we can �nd k such that
1

32k�1
< " (for example

take any k > log9
1

3"
) then for this k we have

1

nk
p
2 + pk

� 1

2nk
p
2
<

1

2nk
p
2
� " ()

n
nk
p
2
o
<

1 + "

2nk
p
2
:

Remark.
Note that since 2pk+1 = 8nk + 6pk and 2pk = nk+1 � 3nk we have nk+2 �

3nk+1 = 8nk + 3 (nk+1 � 3nk) () nk+2 � 6nk+1 + nk = 0; k 2 N and n1 =

1; n2 = 5:Also note that 2n2k�
�
nk
p
2
�2
= 1 and

�
nk
p
2
	
<
1 + 1=32k�1

2nk
p
2

: �
Problem 3.7
Let p := [ 4

p
n] : Since n 2 N isn�t forth degree of natural number then

p < 4
p
n < p+ 1 () p4 < n < (p+ 1)

4 and

�
4
p
n
	
= 4
p
n�p = n� p4

4
p
n3 + p

4
p
n2 + p2 4

p
n+ p3

� 1
4
p
n3 + p

4
p
n2 + p2 4

p
n+ p3

>
1

4
4
p
n3

because 4
p
n3+ p

4
p
n2+ p2 4

p
n+ p3 <

4
p
n3+ 4

p
n � 4
p
n2+( 4

p
n)
2 4
p
n+( 4

p
n)
3
:

�
FProblem -3.8. (J289, MR) (Identity with integer parts).

Let n :=
�

1

1� a

�
then 1 � n � 1

1� a < n+1 =)
1

n+ 1
< 1�a � 1

n
()

n� 1
n

� a <
n

n+ 1
and, therefore,

(n� 1) (n+ 1)
n

� a

�
1 +

�
1

1� a

��
<

n (n+ 1)

n+ 1
() n2 � 1

n
+1 � a

�
1 +

�
1

1� a

��
+1 < n+1:Since

n2 � 1
n

+1 =

n� 1

n
+ 1 � n for any natural n then

n � a
�
1 +

�
1

1� a

��
+ 1 < n+ 1 ()

�
a

�
1 +

�
1

1� a

���
+ 1 = n:
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Thus,
�
a

�
1 +

�
1

1� a

���
+ 1 =

�
1

1� a

�
:

Or, such variant:

Prove that
��
1� 1

x

�
(1 + [x])

�
+ 1 = [x] for any real x � 1: Let n :=

[x] then 1 � n � x < n+1 =) 1

n+ 1
<
1

x
� 1

n
() n� 1

n
� 1� 1

x
<

n

n+ 1
and, therefore,

(n� 1) (n+ 1)
n

�
�
1� 1

x

�
(1 + [x]) <

n (n+ 1)

n+ 1
() n2 � 1

n
+1 �

�
1� 1

x

�
(1 + [x])+1 < n+1:

Since
n2 � 1
n

+ 1 = n� 1

n
+ 1 � n for any natural n then

n �
�
1� 1

x

�
(1 + [x]) + 1 < n+ 1 ()

��
1� 1

x

�
(1 + [x])

�
+ 1 = n:

Thus,
��
1� 1

x

�
(1 + [x])

�
+ 1 = [x] :

Problem 3.9.
Let an :=

�
m+

p
m2 � 1

�n
+
�
m�

p
m2 � 1

�n
then for an we have recur-

rence
an+1 � 2man + an�1 = 0 and initial conditions a0 = 2; a1 = 2m:
So, an is integer and even for all n and since, m�

p
m2 � 1 2 (0; 1) then�

m�
p
m2 � 1

�n 2 (0; 1) and sequently 1� �m�pm2 � 1
�n 2 (0; 1) :

Therefore in representation�
m+

p
m2 � 1

�n
= an�

�
m�

p
m2 � 1

�n
= (an � 1)+

�
1�

�
m�

p
m2 � 1

�n�j�
m+

p
m2 � 1

�nk
= an�1 and

n�
m+

p
m2 � 1

�no
= 1�

�
m�

p
m2 � 1

�n
:

Thus,
j�
m+

p
m2 � 1

�nk
is odd for all n:

F Poblem 3.10 (W 16, J.Wildt IMO 2017)

For given natural n > 1 let In := f1; 2; :::; ng and let f (k) :=
�
k2

n

�
for any

k 2 In:
Then we should determine jf (In)j.
Consider two cases.
Case1. n is even, that is n = 2m:
Lemma.
For any k 2 Im holds inequality f (k + 1)� f (k) � 1:
Proof.

First we consider k 2 Im�1:Let 1 � k � m�1 then f (k + 1) =
�
k2 + 2k + 1

2m

�
and 1+ f (k) =

�
k2 + 2m

2m

�
:
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Note that k � m� 1 yields

f (k + 1) �
�
k2 + 2 (m� 1) + 1

2m

�
=

�
k2 + 2m� 1

2m

�
�
�
k2 + 2m

2m

�
= 1 + f (k) :

Also for k = m we have

f (m+ 1) =

�
m2 + 2m+ 1

2m

�
=

264m
2 + 2m+ 1

2
m

375 =
2664
�
m2 + 2m+ 1

m

�
2

3775 =
2664m+ 2 +

�
1

m

�
2

3775 = 1 + hm2 i = 1 + f (m) :
Corollary.

f (Im) =
n
0; 1; 2; :::;

hm
2

io
:
Proof.

Note that f (k) isn�t decreasing, that is f (k + 1)� f (k) =

"
(k + 1)

2

n

#
��

k2

n

�
� 0: Also, f (m) =

�
m2

2m

�
=
hm
2

i
and f (1) =

�
1

2m

�
= 0: Suppose that

there is i 2 Im=2 for which f�1 (i) = ?:Obvious that 1 � i <
hm
2

i
:Let k� :=

fk j k 2 Im and f (k) < ig : Then f (k�) < i < f (k� + 1) =) f (k� + 1) �
f (k�) > 1;that is contradiction to Lemma.�
Now note that f (k) is strictly increasing in k 2 fm+ 1;m+ 2; ::; 2mg : In-

deed, since for any k 2 Im we have

f (m+ k) =

"
(m+ k)

2

2m

#
=

�
m2 + 2mk + k2

2m

�
= k +

�
m2 + k2

2m

�
then

f (m+ (k + 1)) = k+1+

"
m2 + (k + 1)

2

2m

#
> k+

�
m2 + k2

2m

�
= f (m+ k) for any k 2 Im�1

:

Hence, jf (I2m�Im)j = m and since jf (Im)j =
hm
2

i
+ 1 then jf (I2m)j =

m+
hm
2

i
+ 1 =

�
3m+ 2

2

�
:
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Case 2. n is odd, that is n = 2m+ 1:
Then as above we will prove divide this case on two parts.
First we consider f on Im+1:
For any k 2 Im we have

f (k + 1) =

�
k2 + 2k + 1

2m+ 1

�
�
�
k2 + 2m+ 1

2m+ 1

�
= 1 +

�
k2

2m+ 1

�
= 1 + f (k + 1)

and

f (m+ 1) =

�
m2 + 2m+ 1

2m+ 1

�
= 1 +

�
m2

2m+ 1

�
; f (1) =

�
1

2m+ 1

�
= 0:

By the same way as above, using inequality f (k + 1) � f (k) + 1; can be

proved that for any 0 < i < 1 +
�

m2

2m+ 1

�
there is preimage in Im+1:

So, jf (Im+1)j = 1 +
�

m2

2m+ 1

�
:

Remains consider behavior of f on I2m+1�Im+1 = fm+ 1 + k j k 2 Im g.
For any k 2 Im we have

f (m+ 1 + k) =

"
(m+ 1)

2
+ 2 (m+ 1) k + k2

2m+ 1

#
= k +

"
k2 + k + (m+ 1)

2

2m+ 1

#

and then

f (m+ 1 + (k + 1)) � k+1+
"
(k + 1)

2
+ (k + 1) + (m+ 1)

2

2m+ 1

#
> k+

"
k2 + k + (m+ 1)

2

2m+ 1

#
= f (m+ 1 + k) :

Since f (k) is strictly increasing in k 2 I2m+1�Im+1 then jf (I2m+1�Im+1)j =
m:Thus,

jf (I2m+1)j = m+ 1 +
�

m2

2m+ 1

�
= 1 +

�
3m2 +m

2m+ 1

�
:

So, jf (In)j =

8>><>>:
1 +

�
3m

2

�
if n = 2m

1 +

�
3m2 + 3m+ 1

2m+ 1

�
if n = 2m+ 1

:

For n = 2m we have jf (In)j = 1 +
�
3m

2

�
= 1 +

�
6m

4

�
= 1 +

�
3n

4

�
:

For n = 2m+ 1 we have

jf (In)j = 1 +
�
3m2 + 3m+ 1

2m+ 1

�
= 1 +

2664
12m2 + 12m+ 4

2m+ 1
4

3775 =
c
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1+

2664
3 (2m+ 1)

2
+ 1

2m+ 1
4

3775 = 1+
2664
�
3 (2m+ 1) +

1

2m+ 1

�
4

3775 = 1+�3 (2m+ 1)4

�
= 1+

�
3n

4

�
:

So, jf (In)j = 1 +
�
3n

4

�
:

Problem 3.11(U182)

Let x 2
�
1

2
; 1

�
:De�ne sequence (xn)n�0 as follows:

x0 := x and xn = 2xn�1 � 1; n � 1:

Then for any x 2
�
1

2
; 1

�
there is n such that xn 2

�
0;
1

2

�
: Indeed, from

xn+1 = 2xn � 1 () xn+1 � 1 = 2 (xn � 1) follows xn � 1 = 2n (x0 � 1) ()
xn = 1� 2n (1� x) :

Since

0 � xn �
1

2
() 0 � 1� 2n (1� x) � 1

2
()

8><>:
2n � 1

1� x
1

1� x � 2
n+1

()

log2
1

1� x � 1 � n � log2
1

1� x

then
�
log2

1

1� x

�
is such n; (because for any real a by de�nition of integer

part of a we have bac � a < bac+ 1 () a� 1 < bac � a):
Hence, for such n we obtain f (x) = f (x0) = f (2x0 � 1) = f (x1) =

f (2x1 � 1) = f (x2) = ::: = f (xn�1) = f (2xn�1 � 1) = f (xn) = c: Thus
f (x) = c for any x 2 [0; 1) and, since by condition f (x) is continuous on
[0; 1] ; then f (1) = lim

x!1�
f (x) = lim

x!1�
c = c:

�
�

4. Equations, systems of equations.

FProblem 4.1(Generalization of M703* Kvant)
Let a := q + r; b := r + p; c := p + q:Since p; q; r > 0 then a; b; c satisfy

to triangle inequalities and, therefore, numbers a; b; c determiner a triangle
ABC with sidelengths a = BC; b = CA; c = AB. Note that x; y; z have
the same sign and since xy+yz+zx and (q + r) (x+ 1=x) = (r + p) (y + 1=y) =
(p+ q) (z + 1=z) are invariant with respect to transformation (x; y; z) 7�! (�x;�y;�z) we
further assume that x; y; x > 0:
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Let � := 2 tan�1 x; � := 2 tan�1 y; 
 := 2 tan�1 z: Since x; y; z > 0 then

�; �; 
 2 (0; �) ; x+1=x = 2

sin�
; y+1=y =

2

sin�
; z+1=z =

2

sin 

; xy+yz+zx = 1 ()

(1) tan
�

2
tan

�

2
+ tan

�

2
tan




2
+ tan




2
tan

�

2
= 1

and

(q + r) (x+ 1=x) = (r + p) (y + 1=y) = (p+ q) (z + 1=z)

can be rewritten in the form

(2)
a

sin�
=

b

sin�
=

c

sin 

:
Now we will pay attention to the correlation (1).

We have (1) () tan
�

2

�
tan

�

2
+ tan




2

�
= 1 � tan �

2
tan




2
: Note that

tan
�

2
tan




2
6= 1 because otherwise since �; 
 2 (0; �) we obtain tan �

2
= 0 ()

� = 0 (contradiction with � > 0). Thus,

(1) () tan
��
2
� �
2

�
=

tan
�

2
+ tan




2

1� tan �
2
tan




2

() tan
��
2
� �
2

�
= tan

�
�

2
+



2

�
()

�

2
� �
2
=
�

2
+



2
() �+ � + 
 = � (because

�

2
� �
2
;
�

2
+



2
2
�
0;
�

2

�
).

Since �; �; 
 2 (0; �) and � + � + 
 = � then �; �; 
 can be consid-
ered as angles of some triangle with correspondent sidelengths sin�; sin�; sin 

which due to (2) is similar to triangle ABC:Hence, � = A; � = B; 
 = C and,

therefore, (x; y; z) =
�
tan

A

2
; tan

B

2
; tan

C

2

�
and (x; y; z) =

�
� tan A

2
;� tan B

2
;� tan C

2

�
all

solutions of the system�
a (x+ 1=x) = b (y + 1=y) = c (z + 1=z)

xy + yz + zx = 1
:

It remains only to express tan
A

2
; tan

B

2
; tan

C

2
via p; q; r: Let s :=

a+ b+ c

2
=

p+ q + r then

tan
A

2
=

r

s� a =

s
(s� b) (s� c)
s (s� a) =

r
qr

p (p+ q + r)
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and, cyclic,

tan
B

2
=

r
rp

q (p+ q + r)
; tanC =

r
pq

r (p+ q + r)
:

So, (x; y; z) = � 1p
p+ q + r

�r
qr

p
;

r
rp

q
;

r
pq

r

�
all solutions of original sys-

tem.

Problem 4.2
First note that x; y; z 6= �1 ( if, for example, x2 = 1 then �rst equation give

us x = 0).

Then

8<: 2x+ x2y = y
2y2 + y2z = z
2z2 + z2x = x

()

8>>>><>>>>:
y =

2x

1� x2
z =

2y

1� y2

x =
2z

1� z2

:

Let � := tan�1 (x) then x = tan�; where � 2 (��=2; �=2) : Hence, y =
tan 2�; z = tan 4� and third equation becomes tan� = tan 8� () 8� =

� + k� () 7� = k� () � =
k�

7
; where k 2 Z and

����k�7
���� < �

2
() jkj �

3: Thus, (x; y; z) =
�
tan

k�

7
; tan

2k�

7
; tan

4k�

7

�
; k 2 f�3;�2;�1; 0; 1; 2; 3g

represent all solutions of the system.

Problem 4.3

Let f (x) := x� sinx:Then system becomes

8<: y = f (x)
z = f (y)
x = f (z)

:

Note that function f (x) increasing in R:Indeed, let x1 < x2 and 0 <
x2 � x1 < � then f (x2) � f (x1) = x2 � sinx2 � (x1 � sinx1) = x2 � x1 �
(sinx2 � sinx1) = x2�x1�2 cos

x2 + x1
2

sin
x2 � x1
2

� x2�x1�2 sin
x2 � x1
2

>

0 because sin t < t for 0 < t <
�

2
:

Assume that x 6= y let it be x < y then f (x) < f (y) () y < z =)
f (y) < f (z) () z < x: Thus, x < y < z < x that is the contradiction.
If y < x then f (y) < f (x) () z < y =) f (z) < f (y) () x < z =)

f (x) < f (z) () y < x;that is the contradiction again. So, x = y. Similarly
we get y = z and, therefore, x = y = z = t where t is any solution of equation
sin t = 0;that is t = n�; n 2 Z:

Problem 4.4.
First we will prove, using Math Induction, that for any real x1; x2; :::; xn holds

inequality

(1) n
�
x21 + x

2
2 + :::+ x

2
n

�
� (x1 + x2 + :::+ xn)2
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and equality occurs i¤ x1 = x2 = ::: = xn:
1. Base of Math Induction.

2
�
x21 + x

2
2

�
� (x1 + x2)

2 () (x1 � x2)2 � 0 and equality occurs i¤
x1 = x2:
2. Step of Math Iduction.
Since (x1 + x2 + :::+ xn)

2 � n
�
x21 + x

2
2 + :::+ x

2
n

�
by supposition of Math

Induction then

(x1 + x2 + :::+ xn + xn+1)
2
= (x1 + x2 + :::+ xn)

2
+2xn+1 (x1 + x2 + :::+ xn)+x

2
n+1 �

n
�
x21 + x

2
2 + :::+ x

2
n

�
+2xn+1 (x1 + x2 + :::+ xn)+x

2
n+1+

�
x2n+1 + x

2
1

�
+
�
x2n+1 + x

2
2

�
+:::+

�
x2n+1 + x

2
n

�
=

(n+ 1)
�
x21 + x

2
2 + :::+ x

2
n + x

2
n+1

�
because 2xn+1xi � x2n+1+x2i ; i = 1; 2; :::; n:

Equality occurs by supposition of Math Induction i¤ x1 = x2 = ::: = xn and
xn+1 = xi; i = 1; 2; :::; n by base of Math Induction.
Coming back to the system, since n

�
x21 + x

2
2 + :::+ x

2
n

�
= (x1 + x2 + :::+ xn)

2

we can conclude that x1 = x2 = ::: = xn =
1

n
:

Problem 4.5.

a) We have
�

x2 + y2 + z2 = 1
x+ y + az = 1 + a

()
�

x2 + y2 = 1� z2
x+ y = 1 + a� az :

Since (x� y)2 = 2
�
x2 + y2

�
� (x+ y)

2
= 2

�
1� z2

�
� (1 + a� az)2 =

2
�
1� z2

�
� (1 + a� az)2 = �

�
a2 + 2

�
z2 + 2a (a+ 1) z � a2 � 2a + 1 then

�
�
a2 + 2

�
z2 + 2a (a+ 1) z � a2 � 2a+ 1 � 0 ()

�
a2 + 2

�
z2 � 2a (a+ 1) z +

a2+2a�1 � 0; where latter inequality solvable i¤ discriminant of quadratic tri-
nomial isn�t negative, that is i¤ a2 (a+ 1)2 �

�
a2 + 2

� �
a2 + 2a� 1

�
= 2� 4a �

0 () a � 1=2:
Thus, for a � 1=2 the system is solvable only if a = 1=2 and in that case

we get for z inequality
�
(1=2)

2
+ 2
�
z2� 3=2z+ (1=2)2 � 0 () 1

4
(3z � 1)2 �

0 () z = 1=3:
For a = 1=2 and such z the system becomes�

x2 + y2 = 8=9
x+ y = 4=3

() x = y = 2=3:

So solution is (x; y; z) = (2=3; 2=3; 1=3) :

b) Solution 1.
Let x; y; z be solution of the system. Then x; y; z can be represented as

solutions of the cubic equation

(u� x) (u� y) (u� z) = 0 () u3�(x+ y + z)u2+(xy + yz + zx)u�xyz = 0 ()

(1) u3 � au2 + (xy + yz + zx)u� xyz = 0:
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Since
1

x
+
1

y
+
1

z
=
1

a
() a (xy + yz + zx) = xyz then equation (1) becomes

u3 � au2 + (xy + yz + zx)u� a (xy + yz + zx) = 0 ()

�
xy + xz + yz + u2

�
(u� a) = 0:

Since u 2 fx; y; zg then in particular for u = x we have�
xy + xz + yz + x2

�
(x� a) = 0 ()

(x� a) (x+ z) (x+ y) = 0 ()

24 x = a
z = �x
y = �x

:

Consider case x = a:Then

8<: y + z = 0
1

y
+
1

z
= 0

() z = �y where y 2 R� f0g is

any. If z = �x then y = a and if y = �x then z = a:So, we get solutions
(x; y; z) = (a; t;�t) ; t 2 R� f0g :And by symmetry we have also (x; y; z) =
(t; a;�t) ; (t;�t; a) ; t 2 R� f0g :

Solution 2.

8<: x+ y + z = a
1

x
+
1

y
+
1

z
=
1

a

()

8<: x+ y = a� z
1

x
+
1

y
=
1

a
� 1
z

()

8<: x+ y = a� z
z � a
xy

+
z � a
az

= 0
()

8<: x+ y = a� z�
z = a

xy + az = 0
()

2664
�
x+ y = a� z

z = a�
x+ y = a� z
xy = �az

()

26666664

�
x+ y = 0
z = a�
x = a
y = �z�
y = a
x = �z

:

Problem 4.6 (95-Met. Rec.)
We have�
x+ y + z = 2

xy + yz + zx = 1
()

�
x+ y = 2� z

xy = 1� z (y + z) ()
�
x+ y = 2� z
xy = (z � 1)2

Since (x+ y)2�4xy = (x� y)2 then obtained Vieta�s System have solutions
i¤ (2� z)2 � 4 (z � 1)2 � 0 () z (3z � 4) � 0 () z 2 [0; 4=3] and, due to
symmetry, x; y 2 [0; 4=3] as well.
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Problem 4.7 (96-Met. Rec.)
Solution.
Note that

2 (cosx� cos y) = cos 2x cos y () 2 cosx = cos y (2 + cos 2x) ()

2 cosx = cos y
�
1 + 2 cos2 x

�
() cos y =

2 cosx

1 + 2 cos2 x
:

Also note that
2 jcosxj

1 + 2 cos2 x
� 1p

2
()

�p
2 jcosxj � 1

�2 � 0 ()

jcosxj ; jcos yj ; jcos zj � 1p
2
:Since cos y =

2 cosx

1 + 2 cos2 x
()

p
2 cos y =

2
p
2 cosx

1 +
�p
2 cosx

�2 then,
denoting, u :=

p
2 cosx; v :=

p
2 cos y; w :=

p
2 cos z and f (t) :=

2t

1 + t2
can

rewrite original system in the form

(1)

8<: v = f (u)
w = f (v)
u = f (w)

; where u; v; w 2 [�1; 1] :

Note that f (t) increasing in [�1; 1] :Indeed, for �1 � t1 < t2 � 1 we have

f (t2)� f (t1) =
2t2
1 + t22

� 2t1
1 + t21

=
2 (t2 � t1) (1� t1t2)
(t22 + 1) (t

2
1 + 1)

> 0

because t1t2 < 1:Since f (t) increasing in [�1; 1] then u; v; w can be solution
of (1) if u = v = w: Indeed, if we assume that v 6= u then in case u < v we
obtain f (u) < f (v) () v < w =) f (v) < f (w) () w < u and,
therefore, u < v < w < u;that is contradiction. If u > v then f (u) > f (v) ()
v > w =) f (v) > f (w) () w > u and, therefore, u > v > w > u ;that is
contradiction again. So, u = v = w = t; where t = 0 is only solution of equation
f (t) = 0:Thus, cosx = cos y = cos z = 0 () x; y; z 2 f�=2 + n� j n 2 Zg :

5. Functional equations and inequalities

Problem 5.1(97-Met. Rec.)
a) Note that f

�
x2
�
� ( f (x))2 � 1=4 ()

f
�
x2
�
� f (x) � 1=4� f (x)+( f (x))

2 () f
�
x2
�
� f (x) � ( f (x)� 1=2)2 :

Let x = 0 then

f
�
02
�
� f (0) � ( f (0)� 1=2)2 () 0 � ( f (0)� 1=2)2 () f (0) = 1=2;

Let x = 1 then

f
�
12
�
� f (1) � ( f (1)� 1=2)2 () 0 � ( f (1)� 1=2)2 () f (1) = 1=2:
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Thus, f (1) = f (0) and that contradict to claim

x1 6= x2 =) f (x1) 6= f (x2) :

So, there is no functions that satisfy to conditions of the problem.

b) Let x = y = 0: Then f (0 + 0) � f (0) + f (0) () 0 � f (0) : From the
other hand since f (x) � x for any x 2 R we have f (0) � 0: Hence, f (0) = 0:By
replacing y in inequality f (x+ y) � f (x) + f (y) with �x we obtain

f (0) � f (x) + f (�x) () 0 � f (x) + f (�x) =)

�f (x) � f (�x) � �x =) �f (x) � �x () x � f (x)
and since f (x) � x then f (x) = x:

Problem 5.2 (99-Met. Rec.)
Note that equation f (x+ f (x)) = f (x) have sence only if

x+f (x) 2 [0; 1] () �x � f (x) � 1�x =) � (x+ f (x)) � f (x+ f (x)) � 1�(x+ f (x)) ()

�x� f (x) � f (x) � 1� x� f (x) () �x
2
� f (x) � 1� x

2
()

�x+ f (x)
2

� f (x+ f (x)) � 1� (x+ f (x))
2

() �x+ f (x)
2

� f (x) � 1� x� f (x)
2

()

�x
3
� f (x) � 1� x

3
; and so on....

For any natural n; assuming �x
n
� f (x) � 1� x

n
for any x 2 [0; 1] ; and by

replacing x with x+ f (x) 2 [0; 1] we obtain

�x+ f (x)
n

� f (x+ f (x)) � 1� (x+ f (x))
n

()

�x+ f (x)
n

� f (x) � 1� (x+ f (x))
n

() � x

n+ 1
� f (x) � 1� x

n+ 1
:

Thus, by Math Induction, inequality �x
n
� f (x) � 1� x

n
; x 2 [0; 1] holds

for any natural n:Hence, lim
n!1

�
�x
n

�
� lim

n!1
f (x) � lim

n!1

1� x
n

() 0 �
f (x) � 0 () f (x) = 0:
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�
Problem 5.3(100-Met. Rec.)
Note that

f (x) f (y)�xy = f (x)+f (y)�1 () f (x) f (y)�f (x)�f (y)+1 = xy () (f (x)� 1) (f (y)� 1) = xy:

Let y = 1: Then (f (x)� 1) (f (1)� 1) = x for any x 2 R: In particular for
x = 1 we obtain

(f (1)� 1) 2 = 1 ()
�
f (1)� 1 = 1
f (1)� 1 = �1 ()

�
f (1) = 2
f (1) = 0

:

If f (1) = 2 then (f (x)� 1) (f (1)� 1) = x yields f (x) � 1 = x ()
f (x) = x+ 1
If f (1) = 2 then (f (x)� 1) (f (1)� 1) = x yields (f (x)� 1) (�1) = x ()

f (x) = 1� x:
Thus, functions f (x) = x+1 and f (x) = 1�x are all solutions of functional

equation of the problem.
Remark.
Continuity requirement in the problem is unnecessary.

Problem5.4 (101-Met. Rec.)
By replacing in equation x with

x

n
we obtain that

nf (x) = f
�x
n

�
+ x () f (x) =

1

n
f
�x
n

�
+
x

n

for any real x: Then

f
�x
n

�
=
1

n
f
� x
n2

�
+
x

n2
() 1

n
f
�x
n

�
=
1

n2
f
� x
n2

�
+
x

n3
:

Hence,

f (x)+
1

n
f
�x
n

�
=
1

n
f
�x
n

�
+
x

n
+
1

n2
f
� x
n2

�
+
x

n3
() f (x) =

1

n2
f
� x
n2

�
+
x

n
+
x

n3
:

And again by replacing x in f (x) =
1

n
f
�x
n

�
+
x

n
with

x

n2
we obtain

f
� x
n2

�
=
1

n
f
� x
n3

�
+
x

n3
:

Hence,

f (x) +
1

n2
f
� x
n2

�
=
1

n2
f
� x
n2

�
+
x

n
+
x

n3
+

�
1

n3
f
� x
n3

�
+
x

n5

�
()

f (x) =
1

n3
f
� x
n3

�
+
x

n
+
x

n3
+
x

n5
and so on....
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For any k 2 N assuming that f (x) = 1

nk
f
� x
nk

�
+

kP
i=1

x

n2i�1
:

Then by replacing x in f (x) =
1

n
f
�x
n

�
+
x

n
with

x

nk
we obtain

f
� x
nk

�
=
1

n
f
� x

nk+1

�
+

x

nk+1
() 1

nk
f
� x
nk

�
=

1

nk+1
f
� x

nk+1

�
+

x

n2k+1

and, therefore,

f (x) +
1

nk
f
� x
nk

�
=
1

nk
f
� x
nk

�
+

kP
i=1

x

n2i�1
+

1

nk+1
f
� x

nk+1

�
+

x

n2k+1
()

f (x) =
1

nk+1
f
� x

nk+1

�
+
k+1P
i=1

x

n2i�1
:

Thus, by Math Induction f (x) =
1

nk
f
� x
nk

�
+

kP
i=1

x

n2i�1
for any k 2 N:Then,

since lim
k!1

kP
i=1

x

n2i�1
= x lim

k!1

1

n
� 1

n2k+1

1� 1

n2

=
nx

n2 � 1 and lim
k!1

1

nk+1
f
� x

nk+1

�
=

0 ( lim
k!1

f
� x

nk+1

�
= f

�
lim
k!1

x

nk+1

�
= f (0) (due continuity of f in x = 0)

and lim
k!1

1

nk+1
= 0) we obtain that f (x) =

nx

n2 � 1 :
Remark.
And again Continuity requirement in the problem is unnecessary. Su¢ ce

claim that f is boundeed in some neighborhood of 0:

Problem 5.5(14-Met. Rec.)

Suppose that there is function continuous on R such that f (x+ 1) (f (x) + 1)+
1 = 0: First not that f (x+ 1) (f (x) + 1) + 1 = 0 yields f (x) 6= �1 for any x 2
R because otherwise if f (x0) = 0 for some x0 then we get f (x0 + 1) (�1 + 1)+
1 = 0 () 1 = 0: Furtermore, f (x) 6= 0 for any x 2 R;because other-
wise if f (x0) = �1 for some x0 then we obtain f (x0 + 1) (0 + 1) + 1 = 0 ()
f (x0 + 1) = �1 and that contradict to previous conclusion. Hence, since f (x) is
continuous on R then f (x) preserve sign on R:
From the other hand since

f (x+ 1) = � 1

f (x) + 1
; x 2 R then f (x+ 2) = � 1

f (x+ 1) + 1
= � 1

� 1

f (x) + 1
+ 1

= �1� 1

f (x)

:If f (x) > 0 for all x 2 R then since f (x+ 2) = �1 � 1

f (x)
< 0 we get

contradiction. If f (x) < 0 for all x 2 R then in the case �1 < f (x) < 0
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we have f (x+ 2) = �1 � 1

f (x)
> 0; that is contradiction again; In the case

f (x) < �1 we obtain f (x+ 1) = � 1

f (x) + 1
> 0�contradiction.

Problem 5.6(15-Met.Rec.)
For given n 2 N any natural a can be uniquely represented in the form*

a = k (n+ 1) + r; where k 2 N [ f0g ; r 2 f1; 2; :::; n+ 1g

:
Let a 2 N be any. If a � n+ 2 then k � 1 and f (a) = f (k (n+ 1) + r) =

f (k (n+ 1) + r � 1 + 1) :Applying f (m+ k) = f (mk � n) form = k (n+ 1)+
r � 1; k = 1 we obtain

f (a) = f ((k (n+ 1) + r � 1) � 1� n) = f (k (n+ 1) + r � 1� n) =

f (k (n+ 1) + r � 1� n) = f ((k � 1) (n+ 1) + r) :

Thus, if a � n+ 2 () k � 1 then

f (a) = f (a� (n+ 1)) = ::: = f (a� k (n+ 1)) = f (r) :

Let a 2 f1; 2; :::; n+ 1g then k = 0 and a = r:We will prove that f (r) =
f (1) for any r 2 f1; 2; :::; n+ 1g :Since r � 1 then by replacing k 2 N in
f (k (n+ 1) + r) = f (r) with r we obtain f (r (n+ 1) + r) = f (r) and applying
f (m+ k) = f (mk � n) for m = r (n+ 1) ; k = r we get

f (r) = f (r (n+ 1) + r) = f
�
r2 (n+ 1)� n

�
= f

�
r2 (n+ 1)� n� 1 + 1

�
=

f
��
r2 � 1

�
(n+ 1) + 1

�
= f (1) :

*Remark.
If a; b 2 N then there is unique pair (k; r) of integers such that a = kb+r and

1 � r � b:Indeed, by Representation Theorem (division with remainder) there
are unique integer number p; � such that a = pb+� and 0 � � < b: If � 6= 0 then
r := � and k := p; If � = 0 then a = pb () a = (p� 1) b + b and
k := p� 1; r := b:

We will prove uniqueness.

Let
�
a = kb+ r
1 � r � b and

�
a = k1b+ r1
1 � r1 � b

then kb + r = k1b + r1 =)

b jk � k1j = jr � r1j :Since 1 � b � r � r1 � b � 1 then jr � r1j < b:Hence,
b jk � k1j < b () jk � k1j < 1 () k = k1 =) r = r1:

FProblem 5.7(U182)
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Let x 2
�
1

2
; 1

�
:De�ne sequence (xn)n�0 as follows:

x0 := x and xn = 2xn�1 � 1; n � 1:

Then for any x 2
�
1

2
; 1

�
there is n such that xn 2

�
0;
1

2

�
: Indeed, from

xn+1 = 2xn � 1 ()
xn+1�1 = 2 (xn � 1) follows xn�1 = 2n (x0 � 1) () xn = 1�2n (1� x) :

Since 0 � xn �
1

2
() 0 � 1�2n (1� x) � 1

2
()

8><>:
2n � 1

1� x
1

1� x � 2
n+1

()

log2
1

1� x � 1 � n � log2
1

1� x then
�
log2

1

1� x

�
is such n; (because for any real a by de�nition of integer part of a we have

bac � a < bac + 1 () a � 1 < bac � a): Hence, for such n we obtain
f (x) = f (x0) = f (2x0 � 1) = f (x1) = f (2x1 � 1) = f (x2) = ::: = f (xn�1) =
f (2xn�1 � 1) = f (xn) = c:
Thus f (x) = c for any x 2 [0; 1) and, since by condition f (x) is continuous

on [0; 1] ; then f (1) = lim
x!1�

f (x) = lim
x!1�

c = c:

6. Recurrences.

Problem 6.1( 4-Met. Rec.)

Let (x; y) be pair of two coprime natural numbers such that
x2 + p

y
and

y2 + p

x
are integer numbers and let t :=

x2 + p

y
2 N: Such pairs we will call

"exotic". Assume also that x > y and gcd (x; p) = gcd (y; p) = 1 We will
prove that t > x and (t; x) be exotic pair, that is gcd (t; x) = 1; gcd (t; p) =

1 and
t2 + p

x
;
x2 + p

t
are integer numbers.

1. t > x () x2 + p

y
> x () x2 + p > xy () x (x� y) + p > 0 (since

x > y);
2. Since gcd (y; p) = 1 and gcd

�
x2 + p; p

�
= gcd

�
x2; p

�
= 1 then

gcd (t; p) = gcd

�
x2 + p

y
; p

�
= gcd

�
y � x

2 + p

y
; p

�
= gcd

�
x2 + p; p

�
= 1:

(Here we used two folowing properties of gcd :
i. Preservation Lemma: gcd (a; b) = gcd (a� kb; b) for any integer k;
ii. Cancellation Property: If gcd (c; b) = 1 then gcd (a; b) = gcd (ac; b) :)

3.
t2 + p

x
2 N: Indeed, t

2 + p

x
=

�
x2 + p

y

�2
+ p

x
=
p2 + 2px2 + py2 + x4

xy2
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and
p2 + 2px2 + py2 + x4

x
= 2px+x3+p�y

2 + p

x
2 N; p

2 + 2px2 + py2 + x4

y2
=

p+

�
x2 + p

y

�2
2 N then p2+2px2+ py2+ x4

... xy2 because gcd
�
x; y2

�
= 1:

(If a
... b; a

... c and gcd (b; c) = 1 then a
... bc).

Also, obvious that
x2 + p

t
= y 2 N:

Thus from exotic pair (x; y) we obtain new exotic pair (t; x) with t > x and
so on.... This process is in�nite. To complete solution we have to prove existance
of exotic pair. Easy to check that pair (x; y) := (p+ 1; 1) is exotic. Indeed,
x2 + p

y
2 N because y = 1; y

2 + p

x
= 1 2 N and gcd (p+ 1; 1) = gcd (p+ 1; p) =

gcd (1; p) :Thus, if x0 := 1; x1 := p + 1 and xn+1 =
x2n + p

xn�1
; n 2 N then we get

increasing sequence x0; x1; :::; xn; :::such that any pair (xn+1; xn) is exotic. Since

xn+1 =
x2n + p

xn�1
() x2n � xn+1xn�1 + p = 0; n 2 N then

x2n+1 � xn+2xn = x2n � xn+1xn�1 () x2n+1 + xn+1xn�1 = x
2
n + xn+2xn ()

xn+1 (xn+1 + xn�1) = xn (xn+2 + xn) ()
xn+1 + xn�1

xn
=
xn+2 + xn
xn+1

; n 2 N =)

xn+1 + xn�1
xn

=
x2 + x0
x1

=
p2 + 3p+ 1 + 1

p+ 1
=
(p+ 1) (p+ 2)

p+ 1
= p+ 2:

Thus the sequence x0; x1; :::; xn; ::: in reality de�ned by Linear Homogeneous
Recurrence �

xn+1 � (p+ 2) xn + xn�1 = 0; n 2 N
x0 = 1; x1 = p+ 1

of the second degree with constant coe¢ cients.
By the way appears the following problem:
Find su¢ cient and necessity conditions for x0 and x1 for which all terms of

the sequence

x0; x1; :::; xn; ::de�ned by recurrence xn+1 =
x2n + p

xn�1
; n 2 N be integer num-

bers.

Problem 6.2(5-Met.Rec.)
First of all we note that an 6= 0 for any n 2 N. It can be easy proved by

Math Induction.
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1. Base of Math Induction: a1; a2; a3 > 0;
2. Step of Math Induction: For any n 2 N assuming an; an+1; an+2 >

0 we obtain an+3 =
an+1an+2 + 5

an
> 0:Thus, an; an+1; an+2 > 0 =)

an+1; an+2; an+3 > 0:Since an+3 =
an+1an+2 + 5

an
() an+3an � an+1an+2 =

5; n 2 N then for any n � 2 we have

an+3an�an+1an+2 = an+2an�1�anan+1 () (an+3 + an+1) an = an+2 (an+1 + an�1) ()

an+3 + an+1
an+2

=
an+1 + an�1

an
:

That yields
an+1 + an�1

an
=

8><>:
a3 + a1
a2

if n is even
a4 + a2
a3

if n is odd
:

Noting that a4 =
2 � 1 + 5
1

= 7 we obtain

an+1 + an�1
an

=

�
3 if n is even
4 if n is odd

=
1

2

�
7 + (�1)n�1

�
; n � 2:

Thus, sequence (an) can be de�ned as follows(
a1 = a2 = 1; a3 = 2

an+1 =
1

2

�
7 + (�1)n�1

�
an � an�1 ; n � 2

and, therefore, an 2 Z for any all n 2 N:
Remark.
In connection with Problem 4 (�nal stage) and Problem 5 we can consider

the following
F Problem.
Prove that for any natural number p there are in�nitely many triples (x; y; z) of

distinct natural
numbers such that:

i. gcd (x; p) = gcd (y; p) = gcd (z; p) = 1;

ii.
xy + p

z
and

yz + p

x
are integer.

Solution.
Assume that we allready have a triple (x; y; z) of distinct natural numbers

that satisfy to i. and ii. And in addition assume that x > y > z;
x+ z

y
is integer

and x; y; z are pairly coprime, that is gcd (x; y) = gcd (y; z) = gcd (z; x) = 1:Let

t :=
xy + p

z
and we will show that triple (t; x; y) has the same properties as

the triple (x; y; z) ;that is:
1. t > x > y (su¢ ce to prove t > x);
2. gcd (t; p) = gcd (x; p) = gcd (y; p) = 1(su¢ ce to prove gcd (t; p) = 1);
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3. t; x; y are pairly coprime;

4.
t+ y

x
;
tx+ p

y
;
xy + p

t
are integer.

Indeed:
1.
xy + p

z
> x () xy + p > xz () x (y � z) + p > 0 (since y � z > 0);

2. gcd (t; p) = gcd
�
xy + p

z
; p

�
= gcd

�
z � xy + p

z
; p

�
= gcd (xy + p; p) =

gcd (xy; p) = 1because gcd (x; p) = gcd (y; p) = gcd (z; p) = 1;
3. Su¢ ce to prove gcd (t; x) = gcd (t; y) = 1 because gcd (x; y) = 1:

We have gcd (t; x) = gcd
�
xy + p

z
; x

�
= gcd

�
z � xy + p

z
; x

�
=

gcd (xy + p; x) = gcd (x; p) = 1 and, similarly, gcd (t; y) = 1:

4. Since
t+ y

x
=

xy + p

z
+ y

x
=
xy + p+ yz

xz
and

xy + p+ yz

x
=

y +
yz + p

x
2 Z; xy + p+ yz

z
= y +

xy + p

z
2 Z then xy + p+ yz

... xz

(because gcd (z; x) = 1),
tx+ p

y
=

xy + p

z
� x+ p
y

=
yx2 + px+ pz

yz

and
yx2 + px+ pz

y
= x2 + p � x+ z

y
2 Z (sincex+ z

y
2 Z);

yx2 + px+ pz

z
= p+ x � yx+ p

z
2 Z (since yx+ p

z
2 Z ).

Hence, yx2 + px+ pz
... yz =) tx+ p

y
2 Z:And at last xy + p

t
= z 2 Z:

So, starting with triple (x; y; z) we construct new triple (t; x; y) which has
the same properties as (x; y; z) and since z < y < x < t the process of con-
struction of triples can be continued inde�nitely. Thus, everything reduced to
�nding at least one triple that satisfy to our claims.
Easy to see that (x; y; z) = (2p+ 1; p+ 1; 1) satisfy to these claims and

then, sequence (an) de�ned by recurrence an+3 =
an+1an+2 + p

an
; n 2 N with

initial conditions a1; a2 = p + 1; a3 = 2p + 1 provide us in�nitely many triples
(an+2; an+1; an) satisfying the problem.

Problem 6.3(16-Met.Rec., Problem 5, Czechoslovakia, MO 1986)
Let an be some solution of the recurrence an+2�2an+1+an = 2; n 2 N: For

example an := n2 satisfy to recurrence ((n+ 2)
2 � 2 (n+ 1)2 + n2 = 2). Then

bn := an�n2 satisfy to recurrence bn+2�2bn+1+bn = 0; n 2 N which has general
solution bn = dn+ c:(Indeed, since bn+2 � 2bn+1 + bn = 0 () bn+2 � bn+1 =
bn+1 � bn; n 2 N then bn+1 � bn = b2 � b1; n 2 N:That is (bn) is arithmatic
sequence with common di¤erence d := b2�b1 and therefore bn = dn+c for some
ct):Hence, an = n2 + dn + c; n 2 N and we have a1 = 1 () 12 + d � 1 + c =
1 () d = �c: Hence, an = n2 � c (n� 1) : Since by condition of the problem
an is integer for all n 2 N then c 2 Z: (Indeed, a2 = 4� c =) c 2 Z).
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Now we can complete the solution.
Equation anan+1 = am we can consider as quadratic equation with respect

to m in natural numbers. We have

anan+1 = am ()
�
n2 � c (n� 1)

� �
(n+ 1)

2 � cn
�
= m2 � c (m� 1) ()

m2 � cm+ c�
�
n2 � c (n� 1)

� �
(n+ 1)

2 � cn
�
= 0 ()

m2 � cm+ 2 (c� 1)n3 � n4 �
�
c2 � c+ 1

�
n2 + c (c� 1)n = 0 ()

m2�cm+
�
c� cn+ n+ n2

� �
cn� n2 � n

�
= 0 ()

�
m = n2 + n� c (n� 1)
m = n (c� (n+ 1)) :

If c � n+2 then n (c� (n+ 1)) > 0 and we can takem = cn�
�
n2 + n

�
2 N;

If c � n+1 then n2 + n� c (n� 1) � n2 + n� (n+ 1) (n� 1) = n+1 and
we can take m = n2 + n� c (n� 1) :

Problem 6.4(17 Met.Rec.)
First note that an+1 > an + 1; n 2 N:Indeed, a2 � a1 > 1 and for any

n 2 N assuming ak+1 > ak + 1; k = 1; 2; :::; n we obtain an+2 � an+1 =
a2n+1 � an+1 � an > a2n+1 � 2an+1 + 1 = (an+1 � 1)2 > a2n > 1:For any term
an of the sequence (an)n�1 we set in correspondence remainder from division
an by 1986, that is an 7! r1986 (an) ; n 2 N: Further we will use short notation
rn := r1986 (an) : Then to each pair (an; an+1) we set in correspondence pair
of its remainders (rn; rn+1) ; n 2 N: Since set of all pairs (an; an+1) is in�nite
(because (an)n�1 is strictly increasing) and set of pairs (rn; rn+1) is �nite (
because rn 2 f0; 1; :::; 1986g for any n) then there are at least two natural
k;m such that (rk; rk+1) = (rm; rm+1) :Assume that k < m and let p := m� k:

Note that sequence r1; r2; :::; rn; :::de�ned recursively as follows:�
r1 = 39; r2 = 45

rn+2 = r1986
�
r2n+1 � rn

�
; n 2 N

:
From the other hand note that ri�1 = r1986

�
r2i � ri+1

�
; i > 1:Indeed,

r2i � ri+1 � a2i � ai+1 (mod 1986) � ai�1 (mod 1986) � ri�1 (mod 1986)

and, since 0 � r1986
�
r2i � ri+1

�
< 1986 we obtain ri�1 = r1986

�
r2i � ri+1

�
:

If k > 1 then applying this "back (reverse) recurcion" to (rk; rk+1) and
(rm; rm+1) we obtain (rk�1; rk) = (rm�1; rm) :Repeating this procedure k �
1 times we obtain

(r1; r2) = (rm�k+1; rm�k+2) () (r1; r2) = (rp+1; rp+2) :
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Then using recurrence rn+2 = r1986
�
r2n+1 � rn

�
; n 2 N we obtain that

(r1; r2; r3; :::; rp) = (rp+1; rp+2; rp+3; :::; r2p) and futhermore, by Math Induction
we can prove that (rpi+1; rpi+2) = (r1; r2) for any i 2 N . Having (rp+1; rp+2) =
(r1; r2) as Base of Math Induction and in supposition (rpi+1; rpi+2) = (r1; r2) and
using rn+2 = r1986

�
r2n+1 � rn

�
; n 2 N we obtain

�
rpi+1; rpi+2; rpi+3; :::; rp(i+1); rp(i+1)+1; rp(i+1)+2

�
= (r1; r2; r3; :::; rp; rp+1; rp+2)

and, therefore,
�
rp(i+1)+1; rp(i+1)+2

�
= (rp+1; rp+2) = (r1; r2) :

Thus, sequence r1; r2; r3; :::; rn; ::: is periodic with period p;that is for any
n; i 2 N holds rn+pi = rn:In particular, since r3 = r1986 (a3) = r1986

�
452 � 39

�
=

r1986 (1986) = 0 then r3+pi = r3 = 0 for any i 2 N () a3+pi
... 1986 for any

i 2 N:
�

Problem 6.5(31-Met. Rec.)
So, we have a0 = a; b0 = b; c0 = c; d0 = d and

(1)

8>><>>:
an+1 = an � bn
bn+1 = bn � cn
cn+1 = cn � dn
dn+1 = dn � an

; n 2 N [ f0g :

Obvious that for any n 2 N holds an + bn + cn + dn = 0:
Also we have an+1 + cn+1 = an � bn + cn � dn () an+1 + cn+1 =

an + cn � (bn + dn) and since � (bn + dn) = an + cn then an+1 + cn+1 =
2 (an + cn) ; n 2 N () an + cn = 2

n�1 (a1 + c1) ; n 2 N: From the other hand
since an+1 = an� bn () bn = an� an+1 =) bn+1 = an+1� an+2 then cn =
bn�bn+1 becomes cn = an�an+1�(an+1 � an+2) () cn = an�2an+1+an+2:
Hence, an+cn = 2n�1 (a1 + c1) =) an+an�2an+1+an+2 = 2n�1 (a1 + c1) ()

(2) an+2�2an+1+2an = 2n�1p; n 2 N; where p = a1+c1 = a�b+c�d
Since 2n�1 = 2n � 2 � 2n�1 + 2 � 2n�2 then

(2)() an+2 � 2np� 2
�
an+1 � 2n�1p

�
+ 2

�
an � 2n�1p

�
= 0 ()

an+2 � 2np�p
2
�n+2 � 2 � 1p

2

an+1 � 2n�1p�p
2
�n+1 + 2 � an � 2

n�1p

2 �
�p
2
�n = 0 ()

xn+2 � 2 cos
�

4
� xn+1 + xn = 0; where xn :=

an � 2n�1p�p
2
�n :

Since general solution of the homogeneous recurrence
(3) xn+2 � 2 cos

�

4
� xn+1 + xn = 0; n 2 N [ f0g

is xn = � cos
n�

4
+� sin

n�

4
; n 2 N[f0g then an�2n�1p =

�p
2
�n �

� cos
n�

4
+ � sin

n�

4

�
()

an =
�p
2
�n �

� cos
n�

4
+ � sin

n�

4

�
+ 2n�2p; n 2 N [ f0g :
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Since a1 =
�p
2
�1�

� cos
1 � �
4

+ � sin
1 � �
4

�
+ 2�1p ()

a1 =
p
2

�
� � 1p

2
+ � � 1p

2

�
+
a1 + c1
2

() a1 = �+�+
a1 + c1
2

() �+� =
a1 � c1
2

and

a2 =
�p
2
�2�

� cos
2 � �
4

+ � sin
2 � �
4

�
+ 20p ()

a1 � b1 = 2� + (a1 + c1) () �b1 � c1 = 2� ()

� = �b1 + c1
2

= �b� c+ c� d
2

=
d� b
2

then

� = �� � c1 =
b1 + c1
2

+
a1 � c1
2

=
a1 + b1
2

=
a� b+ b� c

2
=
a� c
2
:

Hence,

an =
�p
2
�n�a� c

2
cos

n�

4
+
d� b
2

sin
n�

4

�
+ 2n�2 (a+ c� b� d) =

2
n�2
2

�
(a� c) cos n�

4
+ (d� b) sin n�

4

�
+ 2n�2 (a+ c� b� d) :

By cyclic symmetry we also have

cn = 2
n�2
2

�
(c� a) cos n�

4
+ (b� d) sin n�

4

�
+ 2n�2 (c+ a� d� b)

and applying formula max fx; yg = 1

2
(x+ y + jx� yj) we obtain

max fan; cng = 2n�2 (a+ c� b� d) + 2
n�2
2

���(a� c) cos n�
4
+ (d� b) sin n�

4

���
and cyclic

max fbn; dng = 2n�2 (b+ d� c� a) + 2
n�2
2

���(b� d) cos n�
4
+ (a� c) sin n�

4

���
To solve the problem su¢ ce to prove that �n := max fan; bn; cn; dng �

2
n�2
2 for any, divisible by four, natural n; that is prove the inequality

(4) �4k � 22k�1; k 2 N:
Since for n = 4k we have cos

n�

4
= cos k� = (�1)k and sin

n�

4
= sin k� =

0 then �4k = 2
2k�1max

�
22k�1 (a+ c� b� d) + ja� cj ; 22k�1 (b+ d� a� c) + jb� dj

	
and

�4k � 22k�1; k 2 N ()
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(5) max
�
22k�1 (a+ c� b� d) + ja� cj ; 22k�1 (b+ d� a� c) + jb� dj

	
�

1:
If a+c 6= b+d thenmax

�
22k�1 (a+ c� b� d) + ja� cj ; 22k�1 (b+ d� a� c) + jb� dj

	
�

max
�
22k�1 (a+ c� b� d) ; 22k�1 (b+ d� a� c)

	
+min fja� cj ; jb� djg =

22k�1 ja+ c� b� dj+min fja� cj ; jb� djg � 22k�1 ja+ c� b� dj �
22k�1 � 2 > 1:
If a+ c = b+ d then inequality (5) becomes max fja� cj ; jb� djg � 1:
If a 6= c or b 6= d inequality (5) obviously holds. The case when a = c

and b = d impossible because then since a+ c = b+ d we obtain a = b = c = d.
Thus, inequalty (5) proved and since �4k � 22k�1; k 2 N then in particular we
have �100 � 22�25�1 = 249 > 109 ( 249 > 230 =

�
210
�3
> 10003 = 109 ).

Analysis and generalization.
We will prove more general statement, namely we will prove that

max fan; bn; cn; dng � 2
n�2
2 for any natural n � 2:

Proof.
Since an+cn = �bn�dn; n 2 N then an+1+cn+1 = an�bn+cn�dn ()
an+1 + cn+1 = 2 (an + cn) ; n 2 N and, therefore,
an + cn = 2

n�1 (a1 + c1) () an + cn = 2
n�1 (a+ c� b� d) ; n 2 N:

Hence, bn + dn = � (an + cn) = 2n�1 (b+ d� a� c) ; n 2 N :
Noting that max fan; cng �

an + cn
2

= 2n�2 (a+ c� b� d) ;

max fbn; dng �
bn + dn
2

= 2n�2 (b+ d� a� c)
we obtain max fan; cn; bn; dng � 2n�2 ja+ c� b� dj :

(Because
�

x � p
y � �p =) max fx; yg � jpj :

Indeed, if x � y then
�

x � p
x � �p () x � jpj () max fx; yg � jpj

and if x < y then
�

y � p
y � �p () y � jpj () max fx; yg � jpj):

Thus, in case a+ c 6= b+ d; since ja+ c� b� dj � 1 we obtain
�n := max fan; bn; cn; dng � 2n�2 � 2

n�2
2 for n � 2:

Remark.
In fact inequality �n � 2

n�2
2 for n � 2 holds any n 2 N:

For n = 1 we have max fa1; b1; c1; d1g = max fa� b; b� c; c� d; d� ag �
1 > 2

1�2
2 =

1p
2
:Indeed, since at least one of di¤erence of integers a�b; b�c; c�

d; d�a isn�t zero and a�b+b�c+c�d+d�a = 0 then can�t be a�b � 0; b�c �
0; c� d � 0; d� a � 0: (othervice if a� b � 0; b� c � 0; c� d � 0; d� a � 0 then
a�b = b�c = c�d = c�a = 0). Hence, at least one of a�b; b�c; c�d; d�a begger
then zero and, therefore, max; fa� b; b� c; c� d; d� ag � 1.
Consider now case a+ c = b+ d: Due to cyclic symmetry of recurrence (1)

we can assume that a 6= 0 or b 6= 0 because if a = b = 0 then c = d and at
least one of them isn�t zero (otherwice, we obtain a = b = c = d and that is
contradict to condition of the problem). In that case we can cyclicly rename
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numbers and get a 6= 0 or b 6= 0:Then an + cn = bn + dn = 0; n 2 N: It can be
easy proved by Math Induction:Indeed, we have a1+ c1 = a� b+ c� d = 0 and
b1+d1 = � (a1 + c1) = 0 and since an+cn = bn+dn = 0 then an+cn = 0 yelds
an+1 + cn+1 = an � bn + cn � dn = 0 and bn+1 + dn+1 = � (an+1 + bn+1) = 0:

Since an+1 + bn+1 = an � bn + bn � cn = an � cn = 2an and
an+2 = an+1 � bn+1 then

2an+an+2 = an+1+bn+1+an+1�bn+1 () an+2 = 2an+1�2an; n 2 N[f0g ()

an+2�p
2
�n+2 � 2 � 1p2 an+1�p

2
�n+1 + 2 � an

2 �
�p
2
�n = 0 ()

(1) xn+2�2 cos
�

4
�xn+1+xn = 0; n 2 N[f0g ; where xn :=

an�p
2
�n ; n 2 N[f0g :

Since general solution of the homogeneous recurrence (1) is xn = � cos
n�

4
+

� sin
n�

4
; n 2 N [ f0g then an =

�p
2
�n �

� cos
n�

4
+ � sin

n�

4

�
; n 2 N [

f0g ;where �; � be some real constants. Since a0 =
�p
2
�0�

� cos
0 � �
4

+ � sin
0 � �
4

�
()

a = � and a1 =
�p
2
�1�

� cos
1 � �
4

+ � sin
1 � �
4

�
() a1 =

p
2

�
a � 1p

2
+ � � 1p

2

�
()

a�b = a+� () � = �b then an =
�p
2
�n �

a cos
n�

4
� b sin n�

4

�
; n 2 N[f0g :

Hence,max fan; cng = max fan;�ang = janj = 2n=2
���a cos n�

4
� b sin n�

4

��� ; n 2
N and, cyclic we have

max fbn; dng = 2n=2
���b cos n�

4
� c sin n�

4

��� = 2n=2 ���b cos n�
4
+ a sin

n�

4

��� ; n 2 N:
Let �n :=

���a cos n�
4
� b sin n�

4

��� ; �n := ���b cos n�4 + a sin
n�

4

��� :
Then, since max fx; yg = x+ y + jx� yj

2
we obtain

max fan; bn; cn; dng = 2n=2max f�n; �ng = 2
n�2
2 (�n + �n + j�n � �nj) � 2

n�2
2 (�n + �n) :

Therefore,

max fan; bn; cn; dng � 2
n�2
2 max

n���a cos n�
4
� b sin n�

4

���+ ���b cos n�
4
+ a sin

n�

4

���o
:

Let cos' :=
ap

a2 + b2
; sin' :=

bp
a2 + b2

then �n+�n =
p
a2 + b2

����cos�'+ n�
4

����+ ���sin�'+ n�
4

����� �
p
a2 + b2

�
sin2

�
'+

n�

4

�
+ cos2

�
'+

n�

4

��
�
p
a2 + b2 � 1 because a 6=
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0 or b 6= 0: Thus, in the case a + c = b + d for any n 2 N holds inequality

max fan; bn; cn; dng � 2
n�2
2 :

Problem 6.6(19-Met. Rec.)
Recurrence that de�ne the sequence a1; a2; :::; an;::: can be rewritten as
(1) an =

P
t2D(n)

at;

where a1 = a and D (n) is set of all natural divisors of n:
First we collect experimental material which can clarify place of this prob-

lem among the known facts.
i. L e /t n = p;where p is prime number. Then D (p) = f1; pg and we get

ap = a1 + ap () ap = a
p � a

... p by Little Fermat Theorem.
ii. Le /t n = p2; where p is prime number. Then D

�
p2
�
=
�
1; p; p2

	
and we

get ap
2

= a1 + ap + ap2 () ap2 = a+ ap � a+ ap2 () ap2 = a
p2 � ap:

If gcd (a; p) = 1 then ap2 = ap
�
ap

2�p � 1
�
:Since p2�p = '

�
p2
�
;where ' (a) is

Euler�s totient function (that counts the natural numbers which does not exceed

a and relatively prime with a ) then by Euler Theorem a'(p
2) � 1

... p2 and,

therefore, ap2
... p2:If gcd (a; p) 6= 1 then a

... p and ap
... p2 =) ap2

... p2 since

p � 2: Thus ap2
... p2 for any a > 1:

iii. Le /t n = pk then by Math induction we will prove that apk = ap
k �apk�1 :

Base of Math Induction we already have.
For n = pk+1 we have

ap
k+1

=
kP
i=0

api + apk+1 = a+
kP
i=1

�
ap

i

� ap
i�1
�
+ apk+1 = a

pka+ apk+1 :

Hence, apk+1 = ap
k+1�apk : Thus, apk = ap

k�1
�
ap

k�pk�1 � 1
�
= ap

k�1
�
a'(p

k) � 1
�

and further as in ii.

If gcd (a; p) = 1 then a'(p
k) � 1

... pk =) apk
... pk;

If gcd (a; p) 6= 1 then a
... p and ap

k�1 ... pp
k�1
:Since for any k 2 N holds*

pk�1 � 2k�1 � k then ap
k�1 ... pk =) apk

... pk:
(* We have 2k�1 = k for k = 1; 2 and for any k � 3
from 2k�1 > k follows 2k = 2 � 2k�1 > 2k > k + 1).

iX. Let n = p � q;where p; q be di¤erent prime numbers. Then
apq = a1+ap+aq+apq = a+a

p�a+aq�a+apq () apq = a
pq�ap�aq+a

and we have apq�ap�aq+a = ap
�
ap(q�1) � 1

�
�a
�
aq�1 � 1

� ... �aq�1 � 1� because
ap(q�1) � 1 =

�
aq�1

�p � 1 ... �aq�1 � 1� and similarly
apq � ap � aq + a = aq

�
aq(p�1) � 1

�
� a

�
ap�1 � 1

� ... �ap�1 � 1� :
c
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If gcd (a; pq) = 1 then by Little Fermat Theorem ap�1�1
... p; aq�1�1

... q and,
therefore,8<: apq

... p

apq
... q

=) apq
... pq (since gcd (p; q) = 1);

If gcd (a; pq) 6= 1 then by cosideration cases gcd (a; p) 6= 1 and gcd (a; q) = 1
or gcd (a; p) = 1 and gcd (a; q) 6= 1; or gcd (a; p) 6= 1 and gcd (a; q) 6= 1 we

again, as we did before, obtain apq
... pq:

We stop consideration of particular cases and and proceed to the problem in
general case using Math Induction by n 2 N� f1g (because for n = 1 statement
of the problem is trivial)

1. Base of induction for n = 2 already proved in i. when p = 2:
2. Step of Math Induction.

For any n > 2 assume that ak
... k for all k < n:Then in particular ak

... k for
all k 2 D (n)� fng :

Let p be prime divisor on n and k := ordpn = max
�
t j t 2 N [ f0g and n

... pt
�
:

Then n = pkm and gcd (m; p) = 1:Let d is any divisor of n; then d =
pit;where 0 � i � k; t is divisor of m and piD (m) :=

�
pit j t 2 D (m)

	
.

Since D (n) =
kS
i=0

piD (m) we can rewrite (1) as an =
kP
i=0

P
t2D(m)

apit =

k�1P
i=0

P
t2D(m)

apit +
P

t2D(m)
apkt =

k�1P
i=0

P
t2D(m)

apit + apkm +
P

t2D(m)�fmg
apkt =

P
t2D(m�pk�1)

apit + apkm +
P

t2D(m)�fmg
apkt = a

pk�1m + an +
P

t2D(m)�fmg
apkt

(because pkm = n and
P

t2D(m�pk�1)
apit = a

pk�1m by (1) ).

Since t < m then pkt < n and by supposition of Math Induction apkt
... pkt: It yields apkt

... pk and, therefore, an � an � ap
k�1m

�
mod pk

�
=

ap
k�1m

�
am(p

k�pk�1) � 1
� �
mod pk

�
= bp

k�1
�
b'(p

k) � 1
� �
mod pk

�
; where b :=

am for short. As above we consider two cases:
1. gcd (a; p) = 1 =) gcd (b; p) = 1 and then by Euler�s Theorem

b'(p
k) � 1

... pk () am(p
k�pk�1) � 1 � 0

�
mod pk

�
=) an � 0

�
mod pk

�
2. gcd (a; p) 6= 1 () a

... p: Su¢ ce to note that ap
k�1 ... pk because

pk�1 � 2k�1 � k (see the similar case in iii.). And again an � 0
�
mod pk

�
:

Since n = pk11 p
k2
2 :::p

pl
l ( prime deciomposition of n) and an

... pkii ; i =

1; 2; :::; l then an
... n:
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Remark.
We will clarify the origin of recurrence, represented in the problem and at

the same time we can give another combinatorial solution of it.
Let n 2 N; In := f1; 2; :::; ng ; Ra := f0; 1; :::; a� 1g and let PM (n; a) be

set of all periodic functions from Z to Ra with period n :
Let f 2 PM (n; a) :Then f (m+ kn) = f (m) for any m; k 2 Z: Indeed,

since f (m+ n) = f (m) for any m 2 Z then f (m) = f ((m� n) + n) =
f (m� n) and by Math Induction easy to prove f (m� kn) = f (m) for any
k 2 N: Since for any m 2 Z we have unique representation m = kn + r; k 2
Z; r 2 In (see Remark to Problem 5.6) then f (m) = f (r + kn) = f (r) :
Thus, any function f 2 PM (n; a) is completely determined by it�s restriction
on In:
Since we have exactly an di¤erent functions from In to Ra then jPM (n; a)j =

an:For each f 2 PM (n; a) we denote p (f) smallest natural period of f; that
is p (f) = k if f (m+ k) = f (m) for any m 2 Z and for any 1 � i < k there
is m 2 Z such that f (m+ i) 6= f (m) : Obvious that if n is period of f then

n is multiple of p (f) that is n
... p (f) :We will say that p (f) is main period of

f: For any k 2 D (n) we denote Fk := ff j f 2 PM (n; a) and p (f) = kg :Let
ak = jFkj be number of n�periodic functions from Z to Ra with main period
k:In particular, Fn is the set of all periodic functions with main period n and
jFnj = an: Obvious that a1 = jF1j because we have only a functions from
I1 = f1g to Ra:

Since PM (n; a) =
S

k2D(n)
Fk and Fk1 \ Fk2 = ? if k1 6= k2 then

jPM (n; a)j =
P

k2D(n)
jFkj () an =

P
k2D(n)

ak () an = an+
P

k2D(n);k<n
ak ()

an = a
n �

P
k2D(n);k<n

ak:

Now we wil prove that an divisible by n: Let S : Fn �! Fn be 1-step shift
operator, that is S (f) (m) = f (m+ 1) and let Si+1 (f) := Si (S (f)) :Then
Si (f) (m) = f (m+ i) and p (Sm (f)) = p (f) :By de�nition S0 (f) := f and
obvious that Sn (f) = f . Consider the following equivalence relation on Fn :
Two functions f; g 2 Fn is equivalent if there are i and j such that Si (f) =

Sj (g) :
Then for any f 2 Fn set

O (f) :=
�
f; S1 (f) ; S2 (f) ; :::; Sn�1 (f)

	
is class of equivalency of f with respect to de�ned above equivalence relation

on Fn: Note that jO (f)j = n: Indeed, Si (f) 6= Sj (f) for 0 � i < j < n becuse
if we assume that Si (f) = Sj (f) then for any m 2 Z we have f (m) =
f ((m� i) + j) = f (m+ (j � i)) : Hence, 0 < j � i < n and j � i is a period of
f ; that is the contradiction with p (f) = n: Let F be set of representators of
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classes of equivalency (by one function from each class of equivalency). Then
O (f1) \ O (f2) = ? if f1; f2 2 F and f1 6= f2: Since Fn =

S
f2F

O (f) and

jO (f)j = n for any f 2 Fn then

jFnj =
P
f2F

jO (f)j = n jF j
... n () an

... n:

Problem 6.7*
Since
(1) an+2 = an+1an � 2 (an+1 + an)� an�1 + 8 ()

an+2 � 2 = (an+1 � 2) (an � 2)� (an�1 � 2)
then for bn := an � 2 we obtain recurrence
(2) bn+2 = bn+1bn � bn�1; n 2 N with b0 = 2; b1 = b2 =

�
a2 � 2

�2 � 2:
For further we need
Lemma.

Let sequense (Pn)n�0 be determined by the recurrence
(3) Pn+2 = Pn+1Pn � Pn�1; n 2 N with P0 = 2; P1 = P2 = x > 2;
and let (fn) be sequence of Fibonacci numbers ( fn+1 = fn+fn�1; n 2 N and

f0 = 1; f1 = 1):
Then requrrence (3) determine polynomial Pn (x) of x; of degree fn with

integer coe¢ cients; such that Pn (cosh (t)) = 2 cosh (fnt) :
Proof.
Since

2 cosh (f0t) = 2 cosh (0) = 2; 2 cosh (f1t) = 2 cosh (f2t) =

2 cosh t = x and2 cosh (fn+1t) � 2 cosh (fnt)� 2 cosh (fn�tt) =

4 cosh (fn+1t) cosh (fnt)�2 cosh (fn�tt) = 2 (cosh (fn+1t+ fnt) + cosh (fn+1t� fnt))�2 cosh (fn�tt) =

2 cosh (fn+2t) + 2 cosh (fn�1t)� 2 cosh (fn�tt) = 2 cosh (fn+2t)

then by Math Induction we obtain that Pn (x) = 2 cosh
�
fn+2 � cosh�1

�x
2

��
Coming back to recurrence (2) and denoting t := cosh�1

�a
2

�
we obtain that�

k2 � 2
�2 � 2 = �4 cosh2 t� 2�2 � 2 = 4 �2 cosh2 t� 1�2 � 2 = 4 cosh2 2t � 2 =

2
�
2 cosh2 2t� 1

�
= 2 cosh 4t and then accordingly to Lemma bn = 2 cosh (4fnt) :Therefore,

an = 2 cosh (4fnt)+2 = 4 cosh
2 (2fnt) and since cosh (x) > 0 for any x then 2+p

an = 2+2 cosh (2fnt) = 2 (1 + cosh (2fnt)) = 4 cosh
2 (fnt) = (2 cosh (fnt))

2
=

(Pn (a))
2
:

Problem 6.8.
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a) Let tn :=
p
1 + 3an then t1 = 3; an =

t2n � 1
3

and, therefore,

t2n+1 � 1
3

=
1

27

�
8 + 3 � t

2
n � 1
3

+ 8tn

�
()

t2n+1 =
1

9

�
16 + 8tn + t

2
n

�
=

�
tn + 4

3

�2
() tn+1 =

tn + 4

3
sincetn > 0:

Thus we have 3n+1tn+1 = 3ntn+4�3n () 3n+1tn+1 = 3
ntn+2

�
3n+1 � 3n

�
()

3n+1tn+1�2�3n+1 = 3ntn�2�3n; n 2 N () 3ntn�2�3n = 31t1�2�31 ()

3ntn � 2 � 3n = 3 () tn =
2 � 3n + 3
3n

=
2 � 3n�1 + 1
3n�1

:

Hence, an =
t2n � 1
3

=

�
2 � 3n�1 + 1
3n�1

�2
� 1

3
=
32n�1 + 4 � 3n�1 + 1

32n�1
:

b) Let tn :=
p
1 + 24an then t1 = 5; an =

t2n � 1
24

and, therefore,

t2n+1 � 1
24

=
1

16

�
1 + 4 � t

2
n � 1
24

+ tn

�
()

t2n+1 =
24

16

�
1 + 4 � t

2
n � 1
24

+ tn

�
+ 1 =

1

4
(tn + 3)

2
:

Since tn > 0 then tn+1 =
tn + 3

2
() 2n+1tn+1 = 2

ntn + 3 � 2n ()

2n+1tn+1 = 2
ntn+3

�
2n+1 � 2

�n () 2n+1tn+1�3�2n = 2ntn�3�2n; n 2 N ()

2ntn�3�2n = 21t1�3�21 () 2ntn�3�2n = 4 () tn =
3 � 2n + 4
2n

=
3 � 2n�2 + 1
2n�2

:

Hence, an =
t2n � 1
24

=

�
3 � 2n�2 + 1
2n�2

�2
� 1

24
=
22n�1 + 3 � 2n�1 + 1

3 � 22n�1 :

Remark.
Note that 22n�1 + 3 � 2n�1 + 1 � 0 (mod 3) :

Problem 6.9.
a),b)

p
an+1 + 1�

p
an+1 =

�p
2� 1

�n+1
=
�p
2� 1

� �p
2� 1

�n
=�p

2� 1
� �p

an + 1�
p
an
�
()

p
2 (an + 1) +

p
an �

�p
2an +

p
an + 1

�
:

Since,
�p

2 (an + 1) +
p
an

�2
= 3an + 2 + 2

p
2an (an + 1) = 3an + 2 + 2tn

and
�p
2an +

p
an + 1

�2
= 3an + 1 + 2tn; where tn :=

p
2an (an + 1)

we obtain:
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p
2 (an + 1) +

p
an =

p
3an + 2 + 2tn;

p
2an +

p
an + 1 =

p
3an + 1 + 2tn

:
Hence*,p
an+1 + 1�

p
an+1 =

p
(3an + 1 + tn) + 1�

p
3an + 1 + 2tn =) an+1 = 3an+2tn+1:

(*Since function h (x) =
p
x+ 1�

p
x =

1p
x+ 1 +

p
x
strictly

monotone decrease, then from h (x1) = h (x2) follows x1 = x2).
From the other hand

t2n+1 = 2an+1 (an+1 + 1) = 2 (3an + 2tn + 1)
2
+ 6an + 4tn + 2 =

18a2n+8t
2
n+2+24antn+8tn+12an+6an+4tn+2 = 18a

2
n+24antn+8t

2
n+18an+12tn+4 =

16a2n + 24antn + 16an +
�
2a2n + 2an

�
+ 8t2n + 12tn + 4 =

16a2n+9t
2
n+4+24antn+16an+12tn = (4an + 3tn + 2)

2 () tn+1 = 4an+3tn+2:

So, we obtain system of recurrences:�
an+1 = 3an + 2tn + 1
tn+1 = 4an + 3tn + 2

; n 2 N .

Hereof 2tn = an+1 � 3an � 1 =) 2tn+1 = an+2 � 3an+1 � 1:Since
2tn+1 = 8an+6tn+4; then an+2� 3an+1� 1 = 8an+3an+1� 9an� 3+4 ()
an+2 � 6an+1 + an = 2 .

Since 4an = tn+1 � 3tn � 2 =) 4an+1 = tn+2 � 3tn+1 � 2 and 4an+1 =
12an + 8tn + 4 we obtain tn+2 � 3tn+1 � 2 = 3tn+1 � 9tn � 6 + 8tn + 4 ()
tn+2 � 6tn+1 + tn = 6. Initial condition follows from identities:

From
p
2� 1 =

p
a1 + 1�

p
a1 we obtain a1 = 1;

From
�p
2� 1

�2
= 3� 2

p
2 =

p
9�

p
8 we obtain a2 = 8:

Since tn =
p
2an (an + 1) and a1 = 1; a2 = 8 we obtain t1 = 2; t2 = 12:So,

from recurrences an+2�6an+1+an = 2 with a1 = 1; a2 = 8 and tn+2�6tn+1+
tn = 6 with t1 = 2; t2 = 12 follows that an and tn are integers for all n 2 N .

Problem 6.10.
Using substitution an := bn + 1 we obtain b0 = b1 = 1 and

bn+2 + 1 =
2bn+1 + 2� 3bn+1bn � 3bn+1 � 3bn � 3 + 17bn + 17� 16
3bn+1 + 3� 4bn+1bn � 4bn+1 � 4bn � 4 + 18bn + 18� 17

()
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bn+2 =
�3bn+1bn � bn+1 + 14bn
�4bn+1bn � bn+1 + 14bn

� 1 = bn+1bn
�4bn+1bn � bn+1 + 14bn

()

1

bn+2
=

14

bn+1
� 1

bn
� 4:

Thus, for sequence cn :=
1

bn
we have recurrence

cn+2 � 14cn+1 + cn = �4; n 2 N [ f0g with c0 = c1 = 1;
and original problem equivalently reduced to the problem:
Prove that cn for any n 2 N [ f0g is a perfect square of natural number.
There is two ways to solve this problem.
First way( use standard technic of solving second degree linear recurrence

with constant coe¢ cients):

Since cn+2 � 14cn+1 + cn = �4 ()
�
cn+2 �

1

3

�
� 14

�
cn+1 �

1

3

�
+�

cn �
1

3

�
= 0 then cn �

1

3
= �

�
7 + 2

p
3
�n
+ �

�
7� 2

p
3
�n
= �

�
2 +

p
3
�2n

+

�
�
2�

p
3
�2n

; n 2 N[f0g where 7+2
p
3 and 7�2

p
3 are the roots of quadratic

equation �2 � 14�+ 1 = 0;associated with recurrence xn+2 � 14xn+1 + xn = 0:

From initial conditions c0 �
1

3
= c1 �

1

3
=
2

3
we obtain � =

2�
p
3

6
= p

3� 1
2
p
3

!2
and � =

2 +
p
3

6
=

 p
3 + 1

2
p
3

!2
: Since

p
3� 1
2
p
3
�
p
3 + 1

2
p
3

=
1

3
then

cn =

 �p
3� 1

� �
2 +

p
3
�n

2
p
3

!2
+

 �p
3 + 1

� �
2�

p
3
�n

2
p
3

!2
+

2 �
�p
3� 1

� �
2 +

p
3
�n

2
p
3

�
�p
3 + 1

� �
2�

p
3
�n

2
p
3

= d2n;

where dn :=

�p
3� 1

� �
2 +

p
3
�n

2
p
3

+

�p
3 + 1

� �
2�

p
3
�n

2
p
3

is integer for any n 2 N [ f0g because dn satisfy to recurrence
dn+2 � 4dn+1 + dn = 0 and d0 = d1 = 1:

Second way:
First note that cn � 0 for any n 2 N [ f0g : Really, since c0 = c1 = 1 then

rewriting recurrence for cn in the form cn+1� cn = cn� cn�1+12cn� 4; n 2 N,
and using Math. Induction we conclude that cn � cn�1 � 0; n 2 N:

Hence, cn � c0 = 1:Denote dn :=
p
cn and, in supposition that dn satisfy

to the recurrence dn+1 � pdn + dn�1 = 0 ; n 2 N with d0 = d1 = 1; we
will �nd recurrence for d2n . Since dn+1dn�1 � d2n = (pdn � dn�1) dn�1 �
dn (pdn�1 � dn�2) = dndn�2 � d2n; then dn+1dn�1 � d2n = d2d0 � d21 = pd1d0 �
d20�d21 = p�2 and from the other hand p2d2n = d2n+1+2dn+1dn�1+d2n�1:Thus,
p2d2n = d2n+1 + 2

�
p� 2 + d2n

�
+ d2n�1 () d2n+1 �

�
p2 � 2

�
d2n + d

2
n�1 =

4 � 2p:From claim p2 � 2 = 14 and 4 � 2p = �4 we obtain p = 4:Since d2n and
cn satisfy to the same recurrence and to the same initial conditions then cn = d2n:
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Problem 6.11*.
First we will �nd for any n;m 2 N [ f0g representation of an+m as lin-

ear combination of an; an+1;that is an+m = pman + qman+1 where coe¢ cients
pm; qm we need to �nd. Note that an+0 = p0an + q0an+1 =) p0 = 1; q0 = 0;
an+1 = p1an + q1an+1 =) p1 = 0; q1 = 1: Also we have an+m+1 = 2an+m +
an+m�1 () pm+1an+qm+1an�1 = 2 (pman + qman�1)+2 (pm�1an + qm�1an�1) ; n 2
N [ f0g =) pm+1 = 2pm + pm�1 and qm+1 = 2qm + qm�1: Since a�1 =
a1 � 2a0 = 1; q0 = 0; q1 = 1 and p0 = 1; p1 = 0 we obtain qm = am; pm =
am�1; m 2 N [ f0g :
Thus, an+m = am�1an + aman+1 for any n;m 2 N [ f0g and, in particular,

a2n = an�1an + anan+1 = an (an�1 + an+1) = an (an�1 + (2an + an�1)) =
2an (an + an�1) ; n 2 N [ f0g :Since bn := an + an�1 satisfy to recurrence
bn+1 = 2bn + bn�1; n 2 N and b0 = b1 = 1 then bn+1 � bn�1 (mod 2) implies
bn � 1 (mod 2) :Thus, a2n = 2anbn and by Math Induction we obtain a2kn =
2kanck; k 2 N where ck is some odd number. Indeed, a2n = 2anc1;(c1 := bn)and
for any k 2 N assuming a2kn = 2kanck; ck � 1 (mod 2) we obtain a2k+1n =
2a2knb2kn = 2 � 2kanckb2kn = 2k+1anck+1 where ck+1 = ckb2kn � 1 (mod 2) :

Let m be any odd natural then am is odd as well because a1 = 1 and
am � am�2 (mod 2) implies am � 1 (mod 2) : Then a2km = 2kamck for any k 2

N[f0g and any odd natural m and, therefore, an
... 2k () n

... 2k:

7. Behavior(analysis) of sequences

Problem 7.1(104-Met.Rec)
Note that (a1 + a3) + 2 (a2 + a4) � 2a2 + 4a3 () a1 + 2a4 � 3a3 and

(a1 + 2a4) + 3 (a3 + a5) � 3a3 + 6a4 () a1 + 3a5 � 4a4:
Let n � 4:Then for any natural 2 � k � n�2 ; assuming that a1+(k � 1) ak+1 �
kak we obtain (a1 + (k � 1) ak+1) + k (ak + ak+2) � kak + 2kak+1 () a1 +
kak+2 � kak+1:Thus, by Math Induction, we proved a1+(k � 1) ak+1 � kak for
any k = 2; :::; n� 1:Since a1 = an = 0 then

a1 + (n� 2) an � nan�1 =) 0 � nan�1 () 0 � an�1:

Since 0 � an�1 then

a1 + (n� 3) an�1 � (n� 1) an�2 =) 0 � (n� 1) an�2 () 0 � an�2

Assuming an�i � 0 for any 1 � i � n � 2; since a1 + (n� i� 2) an�i �
(n� i) an�i�1; we obtain 0 � (n� i) an�i�1 () 0 � an�i�1:
Thus, by Math Induction ak � 0; i = 1; 2; :::; n:

Problem 7.2(105-Met. Rec.)
a) Since an " N then an > 1 ; n > 1 and we obtain
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a2n+1 =

�
an +

1

an

�2
= a2n +

1

a2n
+ 2 =) a2n + 2 < a

2
n+1 < a

2
n + 3 =)

a21 + 2 (n� 1) < a2n < a21 + 3 (n� 1) ()
p
2n� 1 < an <

p
3n� 2; n > 1

More precisely, from
p
2n� 1 < an follows that

an+1 = an +
1

an
< an +

1p
2n� 1

:
That imply

an+1 � a1 <
nP
k=1

1p
2n� 1

() an+1 � 2 <
nP
k=2

1p
2k � 1

=)

an+1�2 <
n�1P
k=1

1p
2k + 1

<
n�1P
k=1

2p
2k + 1 +

p
2k � 1

=
n�1P
k=1

�p
2k + 1�

p
2k � 1

�
=

p
2n� 1� 1 =) an+1 <

p
2n� 1 + 1:

Thus, for any n > 1 holds
p
2n� 1 < an <

p
2n� 3 + 1:In particularly for

n = 100 we obtain 14 <
p
199 < a100 <

p
197+1 < 15:Also from this inequality

follows lim
n!1

anp
n
=
p
2:

b)
i. Since an " N then an > 1 ; n > 1 and we obtain

a3n+1 =

�
an +

1

a2n

�3
= a3n + 3 +

3

a3n
+
1

a6n
> a3n + 3 =)

a3n > a
3
1 + 3 (n� 1) = 3n� 2 () an >

3
p
3n� 2:

iii. an+1 = an+
1

a2n
< an+

1

3

q
(3n� 2)2

=) an+1�2 <
nP
k=2

1

3

q
(3k � 2)2

=)

an+1�2 <
n�1P
k=1

1

3

q
(3k + 1)

2
<

n�1P
k=1

3

3

q
(3k + 1)

2
+ 3
p
(3k + 1) (3k � 2) + 3

q
(3k � 2)2

=

n�1P
k=1

�
3
p
3k + 1� 3

p
3k � 2

�
= 3
p
3n� 2� 1 =) an+1 <

3
p
3n� 2 + 1:

Thus, for any n > 1 holds 3
p
3n� 2 < an � 3

p
3n� 5 + 1

(for n > 2 holds 3
p
3n� 2 < an < 3

p
3n� 5 + 1 ) and lim

n!1

an
3
p
n
= 3
p
3:

ii. Lower bound 3
p
3n� 2 for an isn�t good enough to provide proof of

inequality a9000 > 30 : Starting from a2 = 2 in inequality a3n+1 > a3n + 3 we
obtain that a3n > a

3
2 + 3 (n� 2) = 8 + 3n � 6 = 3n + 2 and this gives sharper

lower bound 3
p
3n+ 2 for an:Thus a9000 >

3
p
27002 > 30:
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From the other hand this lower bound gives us sharper upper bound for an :

an+1 = an +
1

a2n
< an +

1

3

q
(3n+ 2)

2
=)

an+1�1 <
nP
k=1

1

3

q
(3k + 2)

2
<

nP
k=1

3

3

q
(3k + 2)

2
+ 3
p
(3k + 2) (3k � 1) + 3

q
(3k � 1)2

=

nP
k=1

�
3
p
3k + 2� 3

p
3k � 1

�
= 3
p
3n+ 2� 3

p
2 =) an+1 <

3
p
3n+ 2+1�

3
p
2:

Or, an+1 � a1 =
1

a21
+
1

a22
+

nP
k=3

1

a2k
< 1 +

1

4
+

nP
k=3

1

3

q
(3k + 2)

2
<

1+
1

4
+

nP
k=1

�
3
p
3k + 2� 3

p
3k � 1

�
= 1+

1

4
+ 3
p
3n+ 2� 3

p
3 � 3� 1 = 1

4
+ 3
p
3n+ 2�1:

Thus, an+1 <
1

4
+ 3
p
3n+ 2 () an <

1

4
+ 3
p
3n� 1 and �nally we obtain

3
p
3n+ 2 < an <

1

4
+ 3
p
3n� 1:

Problem 7.3(106-Met. Rec.)

an+1 = 2
n � 3an () an+1 =

2n+1

5
+
3 � 2n
5

� 3an ()

an+1 �
2n+1

5
= �3

�
an �

2n

5

�
; n 2 N [ f0g =)

an�
2n

5
= (�3)n

�
a0 �

20

5

�
= (�3)n

�
a� 1

5

�
() an =

2n

5
+(�3)n

�
a� 1

5

�
; n 2 N[f0g :

Now we claim

an+1 > an () 2n+1

5
+ (�3)n+1

�
a� 1

5

�
>
2n

5
+ (�3)n

�
a� 1

5

�
()

2n

5
+ 4 (�3)n+1

�
a� 1

5

�
> 0; n 2 N [ f0g

For n = 2m we have

22m

5
+ 4 (�3)2m+1

�
a� 1

5

�
> 0 () 22m

5
> 12 (�3)2m

�
a� 1

5

�
()

1

60

�
4

9

�m
> a� 1

5
and for n = 2m� 1 we obtain

22m�1

5
+ 4 (�3)2m

�
a� 1

5

�
> 0 () a� 1

5
> � 1

40

�
4

9

�m
:
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Since � 1

40

�
4

9

�m
< a� 1

5
<
1

60

�
4

9

�m
then

lim
m!1

�
� 1

40

�
4

9

�m�
� a�1

5
� lim

m!1

1

60

�
4

9

�m
() 0 � a�1

5
� 0 () a =

1

5
:

Problem 7.4(107-Met. Rec.)
Assume that a1 > 0 (because if a1 � 0 then n0 = 2):If b = 0 then inequality

an+1 �
�
1 +

b

n

�
an � 1; n 2 N becomes

an+1 � an � 1; n 2 N () an+1 + n+ 1 � an + n; n 2 N:
Hence, an + n � a1 + 1 () an � a1 + 1 � n; n 2 N and, therefore, for

n0 = [a1] + 2 we obtain an0 < 0:Let b 2 (0; 1) let p
q
be fraction such that

b � p

q
< 1:Then

an+1 �
�
1 +

b

n

�
an � 1; n 2 N =) an+1 �

�
1 +

p

nq

�
an � 1; n 2 N ()

an+1 �
nq + p

nq
� an � 1; n 2 N =) an+1 �

nq + p

(n� 1) q + p � an � 1; n 2 N ()

an+1
nq + p

� an
(n� 1) q + p �

1

nq + p
; n 2 N:

Hence,
nP
k=1

�
ak+1
kq + p

� ak
(k � 1) q + p

�
� �

nP
k=1

1

kq + p
()

an+1
nq + p

� a1
(1� 1) q + p � �

nP
k=1

1

kq + p
() an+1

nq + p
� a1
p
�

nP
k=1

1

kq + p
=)

an+1
nq + p

� a1
p
�

nP
k=1

1

(k + 1) q
() an+1

nq + p
� a1
p
� 1
q

nP
k=1

1

k + 1
()

an+1
nq + p

� a1
p
+
1

q
� hn+1

q
; n 2 N () an

(n� 1) q + p �
a1
p
+
1

q
� hn
q
; n 2 N,

where hn = 1 +
1

2
+ :::+

1

n
:

Since sequence (hn)n2N have no upper bound (unbounded from above)*
that is for any M > 0 there is n 2 N such that hn > M then, in particular,

for M =
a1q

p
+1 there is n0 such that hn0 >

a1q

p
+1 () a1

p
+
1

q
� hn+1

q
and,

therefore,
an0

(n0 � 1) q + p
� a1
p
+
1

q
� hn0

q
< 0 =) an0 < 0:

*Noting that h2n+1 � h2n =
2n+1P

k=2n+1

1

k
>

2n+1P
k=2n+1

1

2n+1
=
2n+1 � 2n
2n+1

=

2n

2n+1
=
1

2
we obtain

nP
k=1

(h2k � h2k�1) >
n

2
() h2n � h21�1 >

n

2
()
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h2n � h1 >
n

2
() h2n >

n

2
+ 1:Let M be any positive real number. Then for

any natural n > 2 (M � 1) we have h2n >
n

2
+ 1 >

2 (M � 1)
2

+ 1 =M:

Or, we can prove that hn unbounded from above by another way, namely
noting that�
1 +

1

n

�n
< e () 1+

1

n
< e1=n () ln

�
1 +

1

n

�
<
1

n
() ln (n+ 1)�lnn < 1

n

we obtain hn =
nP
k=1

1

k
>

nP
k=1

(ln (k + 1)� ln k) = ln (n+ 1)�ln 1 = ln (n+ 1) :

Problem 7.5*(109-Met.Rec.) (Team Selection Test, Singapur)

Let n 2 N, a0 =
1

2
and ak+1 = ak +

a2k
n
; k 2 N. Prove that

1� 1

n
< an < 1:

Solution.

ak+1 = ak +
a2k
n

() ak+1
n

=
ak
n
+
a2k
n2

() bk+1 = bk + b
2
k; where

bk :=
ak
n
:Since b0 =

1

2n
we have equivalent problem:

Let n 2 N, b0 =
1

2n
and bk+1 = bk + b2k; k 2 N[f0g. Prove that

1

n
� 1

n2
< an <

1

n
:

Since,
1

bk+1
=

1

bk + b2k
=
1

bk
� 1

bk + 1
() 1

bk + 1
=
1

bk
� 1

bk+1
we have

n�1P
k=0

1

bk + 1
=
1

b0
� 1

bn
= 2n� 1

bn
:

Note that bk " N , because bk+1 = bk + b2k > bk; k 2 N[f0g :
Hence bk � b0 =

1

2n
and

2n� 1

bn
�

n�1X
k=0

1

b0 + 1
=

n

b0 + 1
=

n
1

2n
+ 1

=
2n2

2n+ 1
()

1

bn
� 2n� 2n2

2n+ 1
=
2n (n+ 1)

2n+ 1
() bn �

2n+ 1

2n (n+ 1)
:

Since
2n+ 1

2n (n+ 1)
<
1

n
() 2n+ 1 < 2n+ 2 we obtain bn <

1

n
:

From bn <
1

n
and bk " N follows that for all 0 � k < n holds bk <

1

n
:

Using this we obtain 2n� 1

bn
=

n�1P
k=0

1

bk + 1
>

n�1P
k=0

1
1

n
+ 1

=
n2

n+ 1
()

1

bn
< 2n� n2

n+ 1
=
n (n+ 2)

n+ 1
() bn >

n+ 1

n (n+ 2)
and since
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n+ 1

n (n+ 2)
>
1

n
� 1

n2
() n+ 1

n+ 2
>
n� 1
n

() n2+n > n2+2n�n�2 () 2 > 0;

we �nally get bn >
1

n
� 1

n2
:

Problem 7.6(110-Met. Rec.)
Let an :=

�
2 +

p
3
�n
+
�
2�

p
3
�n

then

a0 = 2; a1 = 4 and an+1 � 4an + an�1 = 0; n 2 N:
Since an is integer for any n 2 N [ f0g and�
2 +

p
3
�n
= an�

�
2�

p
3
�n
= an�1+1�

�
2�

p
3
�n
= an�1+1�

1�
2 +

p
3
�n

then
h�
2 +

p
3
�ni

= an � 1 and
n�
2 +

p
3
�no

= 1� 1�
2 +

p
3
�n :

Hence, lim
n!1

n�
2 +

p
3
�no

= lim
n!1

 
1� 1�

2 +
p
3
�n
!
= 1:

Problem 7.7 (111-Met. Rec.)
a) From the recurrence xn+1 = xn (1� xn) ; n 2 N[f0g and x0 2 (0; 1) immediatelly

follows that xn is positive for any n 2 N[f0g : Since xn+1 � xn = �x2n then
(xn)n�0 is decreasing sequence. Thus (xn) converge to some number a and

since xn+1 = xn (1� xn) �
1

4
then a 2

�
0;
1

4

�
and a = a (1� a) :

Therefore lim
n!1

xn = 0:

For any k 2 N[f0g we have 1

xk+1
=

1

xk (1� xk)
=
1

xk
+

1

1� xk
()

1

xk+1
� 1

xk
=

1

1� xk
and since

1

1� xk
> 1; then

1

xn
� 1

x0
=

n�1P
k=0

�
1

xk+1
� 1

xk

�
=

n�1P
k=0

1

1� xk
> n for any n 2 N.

Thus, we have inequality

(1)
1

xn
>
1

x0
+ n; which can be rewritten in the form

(2)
1

nxn
> 1 +

1

nx0

and in the form xn <
x0

1 + nx0
<
1

n
:

Since xn <
1

n
; n 2 N and 1

xn
� 1

x2
=

n�1P
k=2

1

1� xk
then

1

xn
� 1

x2
<

n�1X
k=2

1

1� 1

k

=
n�1X
k=2

k

k � 1 =
n�1X
k=2

�
1 +

1

k � 1

�
= n�2+hn�2 < n+hn;
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where hn = 1 +
1

2
+ :::+

1

n
:So, we have inequality

(3) 1 +
1

nx0
<

1

nxn
< 1 +

1

nx2
+
hn
n
:

Since
hn
n
decreasing on N (

hn
n
>
hn+1
n+ 1

() nhn+hn > nhn+
n

n+ 1
()

hn >
n

n+ 1
(= hn > 1) and

hn2

n2
<
2

n

(
hn2

n2
=
hn
n2
+
hn2 � hn
n2

<
1 � n
n2

+

�
n2 � n

�
� 1

n+ 1
n2

<
1

n
+
1

n
=
2

n
)

then lim
n!1

hn
n
= 0:Therefore lim

n!1

�
1 +

1

nx2
+
hn
n

�
= 1 and since,

lim
n!1

�
1 +

1

nx0

�
= 1 as well; then lim

n!1

1

nxn
= 1 () lim

n!1
nxn = 1:

Or, alternatively, lim
n!1

hn
n
= 0 because

hn
n
<

0B@1 + 1

22
+
1

32
+ :::+

1

n2

n

1CA
1
2

<

�
2

n

� 1
2
:

Comment .
Using Arithmetic Mean Limit Theorem, we can easy prove that lim

n!1

hn
n
= 0:

( AML Theorem: If lim
n!1

an = a then lim
n!1

a1 + a2 + :::+ an
n

= a ).

And for those, who are familiar with Shtolz Theorem, this problem became
simple exercise on it�s application, namely

lim
n!1

1

nxn
= lim

n!1

1

xn
n
= lim

n!1

1

xn
� 1

xn�1
n� (n� 1) = lim

n!1

1

1� xn�1
1

=
1

1� lim
n!1

xn�1
= 1:

bi) First note that xn > 1 for all n 2 N.Really, x1 = a > 1 and from
supposition xn > 1 follows xn+1 = xn (xn � 1) + 1 > 1:Moreover, xn+1 � xn =
(xn � 1)2 > (a� 1)2

and this imply xn+1 > a+ (n� 1) (a� 1)2 :
Since xn+1 = x2n � xn + 1 () xn+1 � 1 = xn (xn � 1) ()

1

xn+1 � 1
=

1

xn (xn � 1)
=

1

xn � 1
� 1

xn
() 1

xn � 1
� 1

xn+1 � 1
=
1

xn

we have

nP
k=1

1

xk
=

nP
k=1

�
1

xk � 1
� 1

xk+1 � 1

�
=

1

a� 1 �
1

xn+1 � 1
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and

0 <
1

a� 1 �
nP
k=1

1

xk
=

1

xn+1 � 1
<

1

a+ (n� 1) (a� 1)2
:

So,
1P
n=1

1

xn
=

1

a� 1 :

bii) Since x

xn+1 = x
2
n � xn + 1 () xn+1 � 1 = xn (xn � 1) () xn =

xn+1 � 1
xn � 1

then

x1x2:::xn =
xn+1 � 1
x1 � 1

=
xn+1 � 1
a� 1 and

xn+1
x1x2:::xn

=
xn+1 (a� 1)
xn+1 � 1

> a� 1:

From the other hand, since
xn+1
xn

= xn �
�
1� 1

xn

�
< xn

then
xn+1
x2n

< 1; and denoting pn :=
xn+1

x1x2:::xn
; we obtain

pn = pn�1 �
xn+1
x2n

< pn�1; n > 1:

Therefore, pn < p1 = x1 = a and a� 1 <
xn+1

x1x2:::xn
< a:

If a is integer then
�

xn+1
x1x2:::xn

�
= a� 1:

Remark.

Since lim
n!1

xn =1 then lim
n!1

xn+1
x1x2:::xn

= lim
n!1

xn+1 (a� 1)
xn+1 � 1

= a� 1:

c) For convenience we will use substitution xn = �an; n 2 N [ f0g :
Then a0 = �

1

3
and an+1 = 1�

1

2
a2n; n 2 N [ f0g :

Note that an 2 (0; 1) for all n 2 N. Really, a1 =
17

18
and from supposition

an 2 (0; 1) immediatelly follows

an+1 = 1�
1

2
a2n 2

�
1

2
; 1

�
� (0; 1) :

Suppose now that a = lim
n!1

an then a = lim
n!1

an+1 = lim
n!1

�
1� 1

2
a2n

�
=

1 � 1

2
lim
n!1

a2n = 1 �
1

2
a2: Since equation a = 1 � 1

2
a2 has only one solution in

(0; 1) ;namely, a =
p
3�1:Then only a� can be the limit of sequence (an)n�1 : So,

su¢ ce to prove that sequence (an)n�1 converge to a:

For any n 2 N we have, jan+1 � aj =
����1� 12a2n � 1� 12a2

���� = 1

2

��a2n � a2�� =
c
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1

2
jan � aj � (an + a) <

1

2
jan � aj �

�
1 +

p
3� 1

�
=

p
3

2
jan � aj :

Hence, jan � aj <
 p

3

2

!n�1
ja1 � aj and that imply lim

n!1
jan � aj = 0 ()

lim
n!1

an = a:

Problem 7.8 (112-Met. Rec.)

Note that xn+1 = 0:5x2n � 1 ()
xn+1
2

=
x2n
4
� 1
2
()

�xn+1
2

=
1

2
�
�
�xn
2

�2
() an+1 =

1

2
� a2n ;

where an := �
xn
2
; n 2 N [ f0g and a0 = �1=6:

We will prove that an 2 (0; 1=2) ; n � 1:
Indeed, a1 =

1

2
� a20 =

1

2
� 1

36
=
17

36
2 (0; 1=2) and for any n 2 N

supposition an 2 (0; 1=2) yields �1=4 < �a2n < 0 =)
1

4
<
1

2
� a2n <

1

2
() an+1 2 (0; 1=2) :

So, by Math Induction an 2 (0; 1=2) ; n 2 N:
Suppose that sequence (an)n�0 converge and a := lim

n!1
an then a � 0 and

a = lim
n!1

an+1 = lim
n!1

�
1

2
� a2n

�
=
1

2
� lim
n!1

a2n =
1

2
� a2 =)

a2 + a� 1
2
= 0

a�0() a =
�1 +

p
3

2
We will prove that lim

n!1
an = a:

Since 0 < an + a <

p
3� 1
2

+
1

2
=

p
3

2
then for any n 2 N we have

jan+1 � aj =
����12 � a2n � a

���� = ����12 � a2n �
�
1

2
� a2

����� =
��a2n � a2�� = jan � aj � jan + aj < p

3

2
jan � aj :

Hence, jan � aj <
 p

3

2

!n�1
ja1 � aj :

Since an = �
xn
2
then lim

n!1
xn = �2 lim

n!1
an = (�2) �

p
3� 1
2

= 1�
p
3:

Problem 7.9*

a) a1 =
1

2
; a2 =

1

2
� 1
4
=
1

4
; a3 =

1

4
� 2

16
=
1

4
� 1
8
=
1

8
:

1. an+1 = an � na2n =
nan (1� nan)

n
� 1

4n
=)
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an �
1

4 (n� 1) ; n > 1 =) an �
1

2n
; n 2 N.

2. Since an �
1

2n
; n 2 N and an+1 = an�na2n () 1

an+1
=
1

an
+

n

1� nan
we obtain

1

an+1
� 1

an
� n

1� n

2n

= 2n and

1

an+1
� 1

a1
=

nP
k=1

k

1� kak
�

nP
k=1

2n = n (n+ 1) =)
1

an+1
� 2 � n (n+ 1) () an �

1

2 + n (n� 1) �
1

n (n+ 1)
:

So,
1

n (n+ 1)
� an �

1

2n
:

But obtained upper bound for an is not good enough to prove inequality

a1 + a2 + :::+ an <
3

2
:

Then, using
1

n (n+ 1)
� an and

1

an+1
� 1

a1
=

nP
k=1

k

1� kak
; we get

1

an+1
�2 =

nP
k=1

k

1� kak
�

nP
k=1

k

1� k � 1

k (k + 1)

=
nP
k=1

(k + 1) =
(n+ 1) (n+ 2)

2
�1 ()

1

an+1
� (n+ 1) (n+ 2)

2
+ 1 =) an �

2

n (n+ 1)
:

Hence, a1 + a2 + :::+ an � 2
�
1� 1

n+ 1

�
< 2:

But we need a1 + a2 + ::: + an <
3

2
:To get this upper bound we will use in

the sum a1 + a2 + :::+ an new estimation of an ; starting from n � 4:
So, for n � 4 we have

a1 + a2 + :::+ an =
1

2
+
1

4
+
1

8
+

nP
k=4

ak <
7

8
+ 2

nP
k=4

1

k (k + 1)
=

7

8
+ 2

�
1

4
� 1

n+ 1

�
<
7

8
+
1

2
=
11

8
<
3

2
:

Since a1; a1 + a2; a1 + a2 + a3 <
3

2
then inequality

a1 + a2 + :::+ an <
3

2
proved for all n 2 N.

Second solution.
Since an+1 � an = �na2n < 0 then an decreasing sequence and since

an+1 = an � na2n =
nan (1� nan)

n
� 1

4n
<

1

n+ 1
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then 0 < an <
1

n
for all n 2 N.

From 0 < an <
1

n
and

1

an+1
� 1

an
=

n

1� nan
follows

1

an+1
� 1

an
> n for all n 2 N and then

1

an+1
� 1

a1
=

nP
k=1

�
1

ak+1
� 1

ak

�
>

nP
k=1

k =
n (n+ 1)

2
=)

1

an+1
> 2 +

n (n+ 1)

2
=
n2 + n+ 4

2
=)

an+1 <
2

n2 + n+ 4
<

2

n (n+ 1)
; n 2 N =)

an �
2

(n� 1)n; n � 2

(since a1 =
1

2
=

2

12 � 1 + 4 then an <
2

n2 � n+ 4 ; n 2 N).
Further the same as above.
Remark.
Little bit worse upper bound can be obtained using AM-GM inequality,

namely, using �rst estimation an+1 �
1

n+ 1
; equalities

1� nan =
an+1
an

and
1

an+1
� 2 =

nP
k=1

k

1� kak
we have

1

an+1
� 2 =

nP
k=1

kan
an+1

� n n

r
n!a1
an+1

� n n
p
(n+ 1)! >

n (n+ 1)

3
;

because n! >
�n
3

�n
:

That gives us an+1 <
3

n (n+ 1)
=) an �

3

n (n� 1) for n > 1:

b) Although the lower and upper bounds for an represented by
double inequality

1

n (n+ 1)
� an �

2

n (n+ 1)

provide proof of inequality a1; a1 + a2; a1 + a2 + a3 <
3

2
,

they are still not good enough because lim
n!1

2

n (n+ 1)
1

n (n+ 1)

= 2 6= 1:

Thus, we somehow have to improve obtained bounds.

Since the function h (x) :=
k

1� kx increasing in
�
0;
1

k

�
and

�
1

k (k + 1)
;

2

k (k + 1)

�
�
�
0;
1

k

�
then

k

1� k � 1

k (k + 1)

<
k

1� kak
<

k

1� k � 2

k (k + 1)

()
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k + 1 <
k

1� kak
<
k (k + 1)

k � 1 :

Unfortunately, upper bound
k (k + 1)

k � 1 is not convenient for further summa-

tion. But we can take
3

n (n+ 3)
; for any n � 3; as upper bound for an; instead

2

n (n+ 1)
(

2

n (n+ 1)
� 3

n (n+ 3)
() n � 3). Then, since 3

k (k + 3)
<
1

k
;we

obtain
k

1� kak
<

k

1� k � 3

k (k + 3)

= k + 3:

Since
1

an+1
� 1

a3
=

nP
k=3

k

1� kak
;then using inequality

k + 1 <
k

1� kak
< k + 3; k = 3; 4; :::; we obtain

nP
k=3

(k + 1) <
1

an+1
� 1

a3
<

nP
k=3

(k + 3) ()

(n+ 1) (n+ 2)

2
� 6 + 1

a3
<

1

an+1
<
(n+ 3) (n+ 4)

2
� 15 + 1

a3
()

(n+ 1) (n+ 2)

2
+ 2 <

1

an+1
<
(n+ 3) (n+ 4)

2
� 7 ()

(n+ 1) (n+ 2)

2
<

1

an+1
<
(n+ 3) (n+ 4)

2
=)

2

n (n+ 1)
< an <

2

(n+ 2) (n+ 3)
:

So, we get "good" bounds for an because

lim
n!1

an
2

n (n+ 1)

= lim
n!1

2

(n+ 2) (n+ 3)
2

n (n+ 1)

= 1;

i.e. we get asymptotic representation for an : an �
2

n (n+ 1)
:

c) Follows immediately from (b).

Problem 7.10
i. We will prove that janj � 1: Really, for any n 2 N suppose that janj � 1:
This imply janj � 2 () 0 � a2n � 4 () �2 � a2n � 2 � 2 ()��a2n � 2�� � 2 () jan+1j � 1:
If a1 = 2; then a2 = 1 and result remains the same,
namely janj � 1 for all n > 1:
ii.
If a1 = 3 then the same recurrence de�nes an unbounded sequence.
Really, if a1 = 3 then an � 3 for all n 2 N because from supposition an � 3

follows an+1 =
a2n � 2
2

� 9� 2
2

= 3:5 > 3:Hereof
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an+1 =
a2n � 2
2

� 3an � 2
2

=
3an
2
� 1 () an+1 � 2 �

3 (an � 1)
2

=)

an� 2 �
�
3

2

�n�1
(a1 � 2) =

�
3

2

�n�1
() an � 2+

�
3

2

�n�1
� 3+ n� 1

2
:

Problem 7.11

i. Since an+1 =
3

4
an +

1

an
� 2
r
3

4
an �

1

an
=
p
3 then

an �
p
3 for all n > 1:

Assuming that M is upper bound for (an)n2N ; since
p
3 � an �M

we obtain
an+1 =

3

4
an +

1

an
� 3

4
M +

1p
3

and we claim
3

4
M +

1p
3
=M () M =

4p
3
:

Note that a2 =
7

4
2
�p

3;
4p
3

�
: Then by Math Induction we obtain

p
3 � an �

4p
3
; n � 2

ii. Noting that 2 =
3

4
� 2 + 1

2
we obtain

jan+1 � 2j =
����34an + 1

an
�
�
3

4
� 2 + 1

2

����� =����34 (an � 2) + 2� an2an

���� = jan � 2j ����34 � 1

2an

���� :
Since

p
3 � an �

4p
3
()

1

2 �
�
4=
p
3
� � 1

2an
� 1

2
p
3
()

p
3

8
� 1

2an
�
p
3

6
()

3

4
�
p
3

6
� 3

4
� 1

2an
� 3

4
�
p
3

8
and

0 <
3

4
�
p
3

6
<
3

4
�
p
3

8
<
2

3

then

����34 � 1

2an

���� = 3

4
� 1

2an
<
3

4
�
p
3

8
<
2

3
:

Hence, jan+1 � 2j <
2

3
jan � 2j ; n � 2 =) jan � 2j <

�
2

3

�n�2
ja2 � 2j =�

2

3

�n�2 ����74 � 2
���� = �23

�n�2
1

4
<

�
2

3

�n
:

Problem 7.12
By substitution an :=

bn+1
bn

in the recurrence an+1 = 1 +
1

an
we obtain
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bn+2
bn+1

= 1+
bn
bn+1

() bn+2 = bn+1+bn:Since a1 =
b2
b1
= 1 and a2 =

b3
b2
= 2

we set b1 = 1; b2 = 1: Thus bn = fn for n 2 N.
Since fn+2 = fn+1 + fn = 2fn + fn�1 and fn = fn�1 + fn�2 we obtain
fn+2�fn = 2fn+fn�1�fn�1�fn�2 = 2fn�fn�2 () fn+2 = 3fn�fn�2:
So, f2n+3 = 3f2n+1 � f2n�1and f2n+2 = 3f2n � f2n�2:
We will prove:

i. a2n�1 =
f2n
f2n�1

<
f2n+1
f2n

= a2n;

ii. a2n�1 =
f2n
f2n�1

<
f2n+2
f2n+1

= a2n+1;

iii. a2n =
f2n+1
f2n

>
f2n+3
f2n+2

= a2n+2;
:
Proof.
i. a2n�1 =

f2n
f2n�1

<
f2n+1
f2n

= a2n ()

f22n < f2n+1f2n�1 (= f2n+1f2n�1 � f22n = 1
(follows from Cassini�s identity fn�1fn+1 � f2n = (�1)

n):

Moreover, from 0 � a2n � a2n�1 =
1

f2n�1f2n
<

1

f22n�1
and

lim
n!1

1

f22n�1
= 0 follows

lim
n!1

(a2n � a2n�1) = 0:
ii,iii. By the same identity we obtain

fn+3fn�fn+1fn+2 = (fn+2 + fn+1) fn�(fn+1 + fn) fn+1 = fn+2fn�f2n+1 = (�1)
n+1

:

Thus, a2n�1 < a2n+1 ()

f2n
f2n�1

<
f2n+2
f2n+1

() f2n+2f2n�1�f2nf2n+1 > 0 (= f2n+2f2n�1�f2nf2n+1 = (�1)2n�1+1 = 1

and

a2n > a2n+2 ()
f2n+1
f2n

>
f2n+3
f2n+2

() f2n+3f2n � f2n+2f2n+1 < 0 (=

f2n+3f2n � f2n+2f2n+1 = (�1)2n+1 = �1:

So, b := lim
n!1

a2n�1 = lim
n!1

a2n and a2n�1 < b < a2n:

Since a2n = 1 +
1

a2n�1
then we obtain that b is positive root of equation

b = 1 +
1

b
() b2 � b� 1 = 0 that is b = 1 +

p
5

2
:

Alternatively, we can directly, using Math. Induction prove that
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(1) a2n�1 <
1 +

p
5

2
< a2n:

Indeed, for any n 2 N assuming (1) we obtain:

a2n+1 = 1 +
1

a2n
< 1 +

2

1 +
p
5
= 1 +

p
5� 1
2

=
1 +

p
5

2
and

a2n+2 = 1 +
1

a2n+1
> 1 +

2

1 +
p
5
=
1 +

p
5

2
:

(Base of Math Induction is inequality a1 =
f2
f1
<
1 +

p
5

2
<
f3
f2
= a2

wich obviously holds)
Another solution can by obtained from Binet formula for fn and
calculation of limits.

Problem 7.13
Since an > 0 for all n we will consider equivalent recurrence

a2n+1 =
a2n
4
+ 1 +

1

a2n
() an+1 =

an
2
+
1

an
;

which by substitution an =
r
pn
qn
can be rewritten in the form

pn+1
qn+1

=
pn
4qn

+ 1 +
qn
pn
=
(2qn + pn)

2

4pnqn
:

Thus we can consider two recurrences
pn+1 = (2qn + pn)

2
; qn+1 = 4pnqn ; n = 1; 2; :::; where p1 = 9; q1 = 4;

since a1 =
3

2
:

Let bn :=
2p
a2n � 2

; then b2n =
4

a2n � 2
=

4qn
pn � 2qn

is integer because

pn � 2qn = 1 for all natural n:This is easy to prove by math induction.
Really, p1 � 2q1 = 9� 8 = 1 and since
pn+1 � 2qn+1 = (2qn + pn)2 � 8pnqn = (2qn � pn)2 = (pn � 2qn)2
from supposition 2qn � pn follows pn+1 � 2qn+1 = 1:
Now using math. induction we will prove that qn and 2qn + 1 are a perfect
squares for any natural n:
Really, q1 = 4 = 22; 2q1 + 1 = 9 = 32:
Suppose now that qn = m2 and 2qn + 1 = k2 for some natural m; k:
Then, since qn+1 = 4qnpn = 4qn (2qn + 1) we obtain qn+1 = (2mk)

2and
2qn+1 + 1 = 8qn (2qn + 1) + 1 = (4qn + 1)

2
:

Problem 7.14.
Since an > 0 for all n we will consider equivalent recurrence

a2n+1 =
a2n
4
+ 1 +

1

a2n
() an+1 =

an
2
+
1

an
;
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which by substitution an =
r
pn
qn
can be rewritten in the form

pn+1
qn+1

=
pn
4qn

+ 1 +
qn
pn
=
(2qn + pn)

2

4pnqn
:

Thus we can consider two recurrences
pn+1 = (2qn + pn)

2
; qn+1 = 4pnqn ; n = 1; 2; :::; where p1 = 9; q1 = 4;

since a1 =
3

2
:

Let bn :=
2p
a2n � 2

; then b2n =
4

a2n � 2
=

4qn
pn � 2qn

is integer because

pn � 2qn = 1 for all natural n:This is easy to prove by math induction.
Really, p1 � 2q1 = 9� 8 = 1 and since
pn+1 � 2qn+1 = (2qn + pn)2 � 8pnqn = (2qn � pn)2 = (pn � 2qn)2
from supposition 2qn � pn follows pn+1 � 2qn+1 = 1:
Now using math. induction we will prove that qn and 2qn + 1 are a perfect
squares for any natural n:
Really, q1 = 4 = 22; 2q1 + 1 = 9 = 32:
Suppose now that qn = m2 and 2qn + 1 = k2 for some natural m; k:
Then, since qn+1 = 4qnpn = 4qn (2qn + 1) we obtain qn+1 = (2mk)

2and
2qn+1 + 1 = 8qn (2qn + 1) + 1 = (4qn + 1)

2
:

Problem 7.15(All Israel Math. Olympiad in Hayfa)
Suppose opposite,i.e. that there is sequence r1 < r2 < ::: < rk < :::
of natural numbers such that Ark = 0: All this rk; k = 1; 2; 3; ::: should
be odd numbers, because, otherwise, all terms of sum Ark are positive
and then Ark > 0:
Since rk; k = 1; 2; 3; ::: odd numbers then from Ark = 0 follows that sum
Ark must contain positive and negative numbers, i.e. in supposition that

ai =

�
bi; i = 1; 2; :::; p

�bi; i = p+ 1; p+ 2; :::;m
; we have Ark =

pP
i=1

brki �
mP

i=p+1

brki :

Thus, Ark = 0 () brk1 + brk2 + :::+ brkp = brkp+1 + brkp+2 + :::+ b
rk
m :

There are i 2 f1; 2; :::; pg and j 2 fp+ 1; :::;mg for which brki = brkj
because otherwise, we get contradiction.
(Really, without loss of generality we can suppose that

b1 = max fb1; b2; :::; bmg and then, denoting ci :=
bi
b1
; i = 2; 3; :::;m;

we obtain that 1 +
pP
i=2

crki =
mP

i=p+1

crki :

Since 0 < ci < 1; i = 2; 3; :::;m then lim
k!1

crki = 0 and, therefore,

1 = lim
k!1

�
1 +

pP
i=2

crki

�
= lim

k!1

mP
i=p+1

crki = 0:)

Using this property we obtain the same situation for m� 2 numbers
and after m� 4 and so on till m� 2k > 0;i.e. till we get one non-zero
number which equal to zero.
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Remark.
The statement "There are i 2 f1; 2; :::; pg and j 2 fp+ 1; :::;mg
for which brki = brkj " can be proved shortly by the such way:
Since brk1 + brk2 + :::+ b

rk
p = brkp+1+ brkp+2+ :::+ b

rk
m then max fb1; b2; :::; bpg =

lim
k!1

rk

p
brk1 + brk2 + :::+ brkp = lim

k!1
rk

q
brkp+1 + brkp+2 + :::+ b

rk
m = max fbp+1; bp+2; :::; bmg :

Problem 7.16*(#7,9-th grade,18-th All Soviet Union Math Olympiad,1984)
(Proposed by Agahanov N.H.)
Let us calculate several �rst terms of the given sequence:

x1 = 1; x2 = �1; x3 =
1

2
; x4 =

3

4
; x5 =

5

16
; x6 = �

71

256
Lemma.
Let sequence (pn) determined by recurrence pn+1 = p2n +

pn
2
; n 2 N with

initial
condition p1 =

3

8
: Then for any n 2 N holds following inequalities:

i. pn <
1

2
; n 2 N;

ii. pn > pn+1; n 2 N;
iii. max fjx2n+3j ; jx2n+4jg � pn:
Proof.(Math. Induction by n )
1. Base of induction.

Let n = 1 then p1 =
3

8
<
1

2
; p2 =

3

8

�
3

8
+
1

2

�
=
21

64
<
3

8
= p1

and max fjx5j ; jx6jg = max
�
5

16
;
71

256

�
=
5

16
<
3

8
= p1:

2. Step of induction.

i. pn+1 = p2n +
pn
2
<
1

4
+
1

4
=
1

2
;

ii. pn+1 = p2n +
pn
2
< pn () pn <

1

2
:

iii. jx2n+5j � jx2n+4j2 +
1

2
jx2n+3j � p2n +

pn
2
= pn+1 and

jx2n+6j � jx2n+5j2 +
1

2
jx2n+4j � p2n+1 +

pn
2
� p2n +

pn
2
= pn+1:

Corollary1.
lim
n!1

pn = 0:

Corollary 2
lim
n!1

xn = 0:

Problem 7.17

an+1 � an (1� an) ()
1

an+1
� 1

an (1� an)
=
1

an
+

1

1� an
()
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1

an+1
� 1

an
=
(1� an) + an

1� an
= 1 +

an
1� an

= 1 +
a2n

an (1� an)
= 1 +

a2n
an+1

> 1:

Thus,
nP
k=1

�
1

ak+1
� 1

ak

�
> n () 1

an+1
� 1

a1
> n =)

1

an
> n� 1 + 1

a1
=
a1 (n� 1) + 1

a1
() an <

a1
a1 (n� 1) + 1

=)

nan <
na1

a1 (n� 1) + 1
< 2 since

na1
a1 (n� 1) + 1

< 2 ()

na1 < 2a1 (n� 1) + 2 () 2a1 � 2 < 2a1n:

Problem 7.18(BAMO-2000)

Since an (1� an) �
1

4
and a2n � an � an+1 () an+1 � an (1� an) then

an 2
�
0;
1

4

�
and

1

an+1
� 1

an
+

1

1� an
>
1

an
+ 1 for any n � 2

because
1

1� an
> 1:

Thus, for any n � 2 we have 1

an+1
>
1

an
+ 1 ()

1

an+1
� (n+ 1) > 1

an
� n =) 1

an
� n > 1

a2
� 2 � 4� 2 = 2 =)

1

an
> n+ 2 () an <

1

n+ 2
<
1

n
:

Problem 7.19 (SSMJ 5281)
First note that an > 0 for all n 2 N ( a1 = a > 0 and from supposition

an > 0 follows an+1 =
an

1 + apn
> 0: Also note that sequence fangn�1

is decreasing. Indeed an � an+1 = an �
an

1 + apn
=

ap+1n

1 + apn
> 0:

Therefore, sequence fangn�1 convergent to some nonnegative limit x.
Then x = lim

n!1
an+1 = lim

n!1

an
1 + apn

=
x

1 + xp
=) x = 0:

Thus, lim
n!1

an = 0:

Since recurrence an+1 =
an

1 + apn
can be rewritten in the form

apn+1 =
apn

(1 + a�n)
p ;then denoting apn via bn we obtain recurrence

(1) bn+1 =
bn

(1 + bn)
p ;with initial condition b1 = ap:

Since
1

bn+1
� 1

bn
=
(1 + bn)

p � 1
bn

and lim
n!1

bn = lim
n!1

apn = 0 then lim
n!1

�
1

bn+1
� 1

bn

�
=

lim
n!1

(1 + bn)
p � 1

bn
= p: Hereof, by Arithmetic Mean Limit Theorem

(if lim
n!1

xn = a then lim
n!1

x1 + x2 + :::+ xn
n

= a ) we obtain
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lim
n!1

1

nbn
= lim

n!1

1

bn
� 1

b1
n� 1 � n� 1

n
= lim

n!1

nP
k=2

�
1

bk
� 1

bk�1

�
n� 1 =

lim
n!1

�
1

bn
� 1

bn�1

�
= p:

Thus, lim
n!1

n
1
p an = lim

n!1
(napn)

1
p = lim

n!1
(nbn)

1
p =

�
1

p

� 1
p
and,

therefore, lim
n!1

an�
1

np

� 1
p

an = 1:

Hence,
1P
n=1

an is convergent i¤
1P
n=1

1

(np)
1
p

is convergent,

that is i¤
1

p
> 1 () p < 1.

Problem 7.20
We can see that sequence 2 cosh (2n�) where � := cosh�1 (2:5)
satisfy to the recurrence an+1 = a2n � 2;since
2
�
2 cosh2 (2n�)� 1

�
= 2 cosh

�
2n+1�

�
and 2 cosh

�
20�

�
= 5 :

Thus, an = 2 cosh (2n�) :
a) Since 2 sinh t � cosh t = sinh 2t then
an+1

a1a2:::an
=

2 cosh
�
2n+1�

�
2n cosh (2�) cosh (2�) ::: cosh (2n�)

� sinh (2�)
sinh (2�)

=

2 cosh
�
2n+1�

�
� sinh (2�)

sinh (2n+1�)
= 2 sinh (2�) � coth

�
2n+1�

�
:

Note that lim
n!1

cosh
�
2n+1�

�
sinh (2n+1�)

= lim
n!1

e2
n+1� + e�2

n+1�

e2n+1� � e�2n+1�
= 1 because � > 0:

Hence, lim
n!1

an+1
a1a2:::an

= 2 sinh (2�) = 2
q
cosh2 (2�)� 1 =

2

r
25

4
� 1 =

p
21:

b) Note that initial recurrence can be rewritten in the form:

1� a
2
n

2
= �an+1

2
; n 2 N.

Using that we obtain:
1

a1
+

1

a1a2
+:::+

1

a1a2:::an
�a1
2
=
1

a1

�
1� a

2
1

2
+
1

a2
+

1

a2a3
+ :::+

1

a1a2:::an

�
=

1

a1

�
1

a2
+

1

a2a3
+ :::+

1

a2:::an
� a2
2

�
=

1

a1a2

�
1� a

2
2

2
+
1

a3
+ :::+

1

a3:::an

�
=

1

a1a2

�
1

a3
+ :::+

1

a3:::an
� a3
2

�
= ::: =

1

a1a2:::an

�
1� a

2
n

2

�
= � an+1

a1a2:::an
:

Since that lim
n!1

�
1

a1
+

1

a1a2
+ :::+

1

a1a2:::an

�
= lim

n!1

�
a1
2
� an+1
a1a2:::an

�
=
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cosh 2�� 2 sinh 2� = 5

2
�
p
21:

Remark.
Another solutions :
We will consider this problem in general case, when

a0 = a; an+1 = a
2
n � 2; n 2 N[f0g

and a is any real number greater then 2.

1.Then an = 2 cosh (2n�) where � = cosh�1
�a
2

�
= ln

 
a+

p
a2 � 4
2

!
:

Denote S (a1; a2; :::; an) :=
1

a1
+

1

a1a2
+ :::+

1

a1a2:::an
.

Since
ak+1

a1a2:::ak
� ak
a1a2:::ak�1

=
1

a1a2:::ak

�
ak+1 � a2k

�
= � 2

a1a2:::ak

and
0Q

k= 1

ak = 1 then
1

a1a2:::ak
=

ak
2a1a2:::ak�1

� ak+1
2a1a2:::ak

and

S (a1; a2; :::; an) =
a1
2
� an+1
2a1a2:::an

:

Since
an+1

a1a2:::an
= 2 sinh (2�) � coth

�
2n+1�

�
then

S (a1; a2; :::; an) =
2 cosh (2�)� 2 sinh (2�) � coth

�
2n+1�

�
2

=

cosh (2�)� sinh (2�) � coth
�
2n+1�

�
:

and, using lim
n!1

coth
�
2n+1�

�
= 1; we �nally obtain

lim
n!1

�
1

a1
+

1

a1a2
+ :::+

1

a1a2:::an

�
= cosh (2�)� sinh (2�) =

cosh2 �+ sinh2 �� 2 cosh� sinh� = (cosh�� sinh�)2 :
2. Both solutions above short but bad motivated. The following solution
I like more, because it is motivated solution.

First note that in�nite sum
1

ak
+

1

akak+1
+ :::+

1

akak+1:::an
+ :::: converge,

because increasing sequence (S (ak; ak+1; :::; an))n�k have upper bound.
Indeed, since an increasing, then

1

ak
+

1

akak+1
+:::+

1

akak+1:::an
<
1

ak
+
1

a2k
+:::+

1

an�k+1k

<

1

ak

1� 1

ak

=
1

ak � 1
<

1

a� 1 :

Since ak = 2 cosh
�
2k�

�
and in�nite sum

1

ak
+

1

akak+1
+ :::+

1

akak+1:::an
+ ::::

depend only from ak then we can denote this sum via S
�
2k�

�
:

Thus,
1

a1
+

1

a1a2
+ :::+

1

a1a2:::an
+ :::: = S (') and

1

a2
+

1

a2a3
+ :::+

1

a2a3:::an
+ :::: = S (2') ;where ' := 2�:
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Since S (') =
1

a1
(1 + S (2')) () S (2') = a1S (')� 1 ()

S (2') = 2 cosh' � S (')� 1 then our problem now is to �nd solution
of this functional equation.
First note that since cosh 2' = 2 cosh2 '� 1 then h (') := S (')� cosh'
satisfy to homogeneous linear functional equation h (2') = 2 cosh' � h (') :
Using representation h (') in the form h (') = C (') � sinh' and identity
sinh (2') = 2 cosh' � sinh' we obtain
C (2') � sinh 2' = 2 cosh' � C (') � sinh' ()
C (2') = C (') =) C (') = C

� '
2n

�
; n 2 N:

In the supposition that C (') is continuous function (series S (') converges
uniformly) we immediately obtain that C (') = C = const:
So, h (') = C � sinh' and S (') = cosh'+ C � sinh':
Since S (2n') =

1

an+1
+

1

an+1an+2
+ ::::: <

1

an+1 � 1
then

lim
n!1

S (2n') = 0 () C = � lim
n!1

coth 2n' = �1:
Thus, S (') = cosh'� sinh' = cosh 2�� sinh 2� = (cosh�� sinh�)2 and

since

cosh� =
a

2
; sinh� =

r
a2

4
� 1 =

p
a2 � 4
2

then

S (') =

�
a�

p
a2 � 4

�2
4

if a0 = a:

If a1 = a then cosh 2� =
a

2
; sinh 2� =

p
a2 � 4
2

and

S (') = cosh'� sinh' = a�
p
a2 � 4
2

:

Problem 7.21*
a) Note that (an) decreasing sequence (an+1 =

an
1 +

p
an
< an; n 2 N).

Then in particularly an � a1 = a ; n 2 N and since
an+1 =

an
1 +

p
an

() 1

an+1
=
1

an
+

1
p
an

() 1

an+1
� 1

an
=

1
p
an

we obtain
1

an+1
� 1

a1
=

nP
k=1

�
1

an+1
� 1

an

�
=

nP
k=1

1
p
ak
�

n
p
a1

() 1

an+1
� 1

a2
+
n

a
=) 1

an+1
� n

a
� n+ 1

2a
:

Thus, an �
2a

n
for any n � 2:

It is not enough for the proof that Sn is bounded, but, using

inequality an �
2a

n
() 1

an
� n

2a
and identity

1

an+1
=
1

a1
+

nP
k=1

1
p
ak
;

we can obtain better upper bound for an:

Really, since an �
2a

n
for any natural n � 2; we have
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1

an+1
=
1

a2
+
1

a
+

nP
k=2

1
p
ak
� 1

a2
+
1

a
+

nP
k=2

p
kp
2a
=
1

a2
+
1

a
+

1p
2a

n�1P
k=1

p
k + 1 :

From the other hand, for any natural n holds inequality

(1)
3

2

p
n+ 1 � (n+ 1)

p
n+ 1� n

p
n , n 2 N:

(Since (n+ 1)
p
n+ 1� n

p
n =

�p
n+ 1�

p
n
� �
2n+ 1 +

p
n (n+ 1)

�
=

2n+ 1 +
p
n (n+ 1)p

n+ 1 +
p
n

then
3

2

p
n+ 1 � (n+ 1)

p
n+ 1� n

p
n ()

3
p
n+ 1

�p
n+ 1 +

p
n
�
� 2

�
2n+ 1 +

p
n (n+ 1)

�
()

3n+ 3 + 3
p
n (n+ 1) � 4n+ 2 + 2

p
n (n+ 1) ()

p
n (n+ 1) � n� 1).

Using inequality (1) we obtain
1

an+1
� 1

a2
+
1

a
+

1p
2a

n�1P
k=1

p
k + 1 � 1

a2
+
1

a
+

2

3
p
2a

n�1P
k=1

�
(k + 1)

p
k + 1� k

p
k
�
=
1

a2
+
1

a
+

2

3
p
2a
(n
p
n� 1) =

1

a
+

1p
a
� 2

3
p
2a
+

2

3
p
2a
(n
p
n� 1) and since 1

a
+

1p
a
� 2

3
p
2a
> 0

then
1

an+1
> cn

p
n;where c =

2

3
p
2a
:

Thus, for any n � 3 holds an �
1

c (n� 1)
p
n� 1

and, therefore,

Sn � a1 + a2 +
nP
k=3

1

c (k � 1)
p
k � 1

= a1 + a2 +
1

c

n�1P
k=2

1

k
p
k
:

Since
1

k
p
k
<

2

k
p
k � 1 + (k � 1)

p
k
=

2p
k � 1

� 2p
k

( k
p
k � 1+(k � 1)

p
k � 2k

p
k () k

p
k � 1 � k

p
k+
p
k =

p
k (k + 1) ()

k3 � k2 � k3 + 2k2 + k ) for k � 2 then
n�1P
k=2

1

k
p
k
=

2p
1
� 2p

n� 1
< 2:

and a1 + a2 +
2

c
is upper bound for Sn :

b) Since pan+1 =
p
anp

1 +
p
an

then by setting bn :=
p
an we obtain

for sequence (bn) recurrence bn+1 =
bnp
1 + bn

with initial condition

b1 = 3 and we will attempt to �nd "good" bounds for bn:
If we get success, then, square of this bounds becames "good"
bounds for an:

Since
1

bn+1
=

p
1 + bn
bn

() 1

bn+1
=
1

bn
+

p
1 + bn � 1
bn

()
1

bn+1
� 1

bn
=

1p
1 + bn + 1
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then
1

bn+1
� 1

b1
=

nP
k=1

�
1

bk+1
� 1

bk

�
=

nP
k=1

1p
1 + bk + 1

=)

(2)
1

bn+1
=
1

3
+

nP
k=1

1p
1 + bk + 1

:

Since bn decreasing then bn � 3; n 2 N and from (2) immediately
follows inequality
1

3
+

nP
k=1

1p
1 + 3 + 1

� 1

bn+1
() 1

3
+
n

3
� 1

bn+1
=) n+ 1

3
� 1

bn+1
=)

n

3
� 1

bn
() bn �

3

n
:

Using inequality
p
1 + x < 1 +

x

2
for x > 0 and inequality bn �

3

n
; n 2 N

we obtain:
1

bn+1
� 1

bn
=

1p
1 + bn + 1

>
1

1 +
bn
2
+ 1

=
2

bn + 4
>

2
3

n
+ 4

=
2n

4n+ 3
=

1

2
� 4n� 3 + 3
4n+ 3

=
1

2

�
1� 3

4n+ 3

�
>
1

2

�
1� 1

n

�
and, therefore,

1

bn+1
� 1

b1
>

nP
k=1

1

2

�
1� 1

k

�
=
n

2
� 1
2
hn;where hn = 1 +

1

2
+ :::+

1

n
:

From the other hand, since bn > 0 then
1

bn+1
� 1

b1
=

nP
k=1

�
1

bn+1
� 1

bn

�
=

nP
k=1

1p
1 + bk + 1

<
nP
k=1

1p
1 + 0 + 1

=
n

2
:

So,
n

2
� 1
2
hn <

1

bn+1
� 1

b1
<
n

2
() n

2
� 1
2
hn +

1

3
<

1

bn+1
<
1

3
+
n

2
:

Since
1

3
+
n

2
<
n+ 1

2
and

n

2
� 1
2
hn +

1

3
<
n

2
� hn
2
then we obtain more

convenient inequality

n� hn
2

<
1

bn+1
<
n+ 1

2
() 2

n+ 1
< bn+1 <

2

n� hn
=) 2

n+ 1
< bn+1 <

2

n� hn+1
=)

(3)
2

n
< bn <

2

n� hn � 1
; n > 1.

Since
hn
n
<

0B@1 + 1

22
+ :::+

1

n2

n

1CA
1
2

and

1 +
1

22
+ :::+

1

n2
< 1 +

1

1 � 2 +
1

2 � 3 :::+
1

(n� 1)n = 1 + 1�
1

n
< 2

then
hn
n
<

r
2

n
:

From this inequality follows that hn <
p
2n and lim

n!1

hn
n
= 0:
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Since, 2 < nbn <
2

1� 1 + hn
n

and lim
n!1

hn
n
= 0 then we obtain lim

n!1
nbn = 2:

So, inequality (3) gives us good bounds for bn: lover bound l (n) =
2

n

and upper bound u (n) =
2

n� hn � 1
:

Since h (n) <
p
2n then we can use more convenient lover bound for bn;

namely we can take u (n) =
2

n�
p
2n� 1

:

Thus, for an we obtain inequality
4

n2
< an <

4

(n� hn � 1)2
or, inequality

4

n2
< an <

4�
n�

p
2n� 1

�2 < 4

n2 � 2n
p
2n
<

4

n2 � 3n
p
n

which determine good bounds for an and asymptotic representation an �
4

n2
:

c) Since recurrence an+1 =
an

1 +
p
an

can be rewritten in the form

p
an+1 =

p
anp

1 +
p
an
;

then denoting
p
an via bn we obtain recurrence

(1) bn+1 =
bnp
1 + bn

;with initial condition b1 =
p
a; b2 � 1

with the same question about good bounds for sequence (bn) :
This is the way to solve the original problem, because sequence (bn)
more convenient object to give answer on question of problem:
For convenience we set a :=

�
b2 � 1

�2
; where b > 1:Then b1 := b2 � 1:

Note that from recurrence (1) obviously follows, that bn decreasing in N
( an+1 =

an
1 +

p
an
< an; n 2 N ). In particularly this yields bn � b1 = b2�1:

Let us rewrite recurrence (*) in the form important for further:
1

bn+1
=

p
1 + bn
bn

() 1

bn+1
=
1

bn
+

p
1 + bn � 1
bn

()

(2)
1

bn+1
� 1

bn
=

1p
1 + bn + 1

:

Hereof we obtain correlation

(3)
nP
k=1

�
1

bk+1
� 1

bk

�
=

1

bn+1
� 1

b1
=

nP
k=1

1p
1 + bn + 1

:

From (3) and bn � b2 � 1 follows
1

bn+1
� 1

b1
=

nP
k=1

1p
1 + bk + 1

�
nP
k=1

1p
1 + (b2 � 1) + 1

=
n

b+ 1
=)

1

bn+1
� 1

b1
+

n

b+ 1
=
n (b� 1) + 1
b2 � 1

and since
n (b� 1) + 1
b2 � 1 >

n+ 1

b (b+ 1)
for any natural n ;we obtain
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1

bn+1
>

n+ 1

b (b+ 1)
() bn+1 <

b (b+ 1)

n+ 1
=) bn <

b (b+ 1)

n
:

Since for any x > 0 holds inequality
p
1 + x < 1 +

x

2
and

bn 2
�
0;
b (b+ 1)

n

�
for any n 2 N then

1

1 +
bn
2
+ 1

<
1p

1 + bn + 1
<

1p
1 + 0 + 1

()

(4)
2

bn + 4
<

1p
1 + bn + 1

<
1

2
and

2

bn + 4
>

2

b (b+ 1)

n
+ 4

=
2n

4n+ b (b+ 1)
=

1

2

�
1� b (b+ 1)

4n+ b (b+ 1)

�
>
1

2

�
1� b (b+ 1)

4n

�
:

Thus, for any n 2 N holds inequality
(5)

1

2

�
1� b (b+ 1)

4n

�
<

1p
1 + bn + 1

<
1

2
:

Using (5) and (3) we obtain
1

2

�
n� b (b+ 1)

4
� hn

�
<

1

bn+1
� 1

b1
<
n

2
()

(6)
1

2

�
n� b (b+ 1)

4
� hn

�
+
1

b1
<

1

bn+1
<
n

2
+
1

b1
;

where hn = 1 +
1

2
+ :::+

1

n
:

Since
hn
n
<

0B@1 + 1

22
+ :::+

1

n2

n

1CA
1
2

and

1 +
1

22
+ :::+

1

n2
< 1 +

1

1 � 2 + :::+
1

(n� 1)n =

1 + 1� 1

n
< 2 then

hn
n
<

r
2

n
:

From this inequality follows that hn <
p
2n and lim

n!1

hn
n
= 0:

Let c := max
�
0;
1

b1
� 1
2

�
then

n

2
+
1

b1
� n+ 1 + c

2
and

from (6) follows inequalities

1

2

�
n� b (b+ 1)

4
� hn � 1

�
<

1

2

�
n� 1� b (b+ 1)

4
� hn�1

�
<
1

bn
<
n+ c

2

which implies
1

2

�
1� b (b+ 1)

4
� hn
n
� 1

n

�
<

1

nbn
<
1

2

�
1 +

c

n

�
:

c
1985-2018 Arkady Alt 104



Math Olympiads Training- Problems and solutions.

Since lim
n!1

1

2

�
1� b (b+ 1)

4
� hn
n
� 1

n

�
= lim

n!1

1

2

�
1 +

c

n

�
=
1

2

then lim
n!1

1

nbn
=
1

2
as well.

Thus, lim
n!1

nbn = 2 and we �nally obtain that lim
n!1

n2an = 4:

Problem 7.22 (One asymptotic behavior)(S183)

Let xn =
pn
2
; n 2 N [ f0g then pn = pn�1 �

p2n�1
2

()

xn = xn�1 � x2n�1; n 2 N and x0 =
p0
2
=
1

p
; where p > 1:

Since 0 < xn; n 2 N [ f0g ( x0 2 (0; 1) and
xn�1 2 (0; 1) =) xn = xn�1 (1� xn�1) 2 (0; 1))

then
1

xn
� 1

x0
=

nP
k=1

�
1

xk
� 1

xk�1

�
=

nP
k=1

1

1� xk�1
>

nP
k=1

1

1� 0 = n () 1

xn
>.p+ n () xn <

1

n+ p
; n 2 N:

Moreover, since x0 =
1

p
then xn �

1

n+ p
; n � 0 and

for n � 1 we obtain
1

xn
� 1

x0
=

nP
k=1

�
1

xk
� 1

xk�1

�
=

nP
k=1

1

1� xk�1
�

nP
k=1

1

1� 1

k � 1 + p

=
nP
k=1

�
1 +

1

k � 2 + p

�
=

n+
nP
k=1

1

k � 2 + p < n+
nP
k=1

1

k � 2 + 2 = n+ hn; where hn :=
nP
k=1

1

k
:

Hence
1

xn
< p+ n+ hn; n 2 N and, since* hn <

p
n+ 1; n 2 N

then
1

xn
< p+ n+

p
n+ 1 () 1

n+
p
n+ p+ 1

< xn <
1

n+ p
:

*( for n � 3 we have n2 > 2n+ 1 =) n2 > 2
p
n (n+ 1) ()

p
n+ 1 +

p
n < n+ 1 () 1

n+ 1
<

1p
n+ 1 +

p
n
()

hn+1 � hn <
p
n+ 1�

p
n and h1 = 1 <

p
1 + 1; h2 <

p
2 + 1;

h3 <
p
3 + 1 )

8. Inequalities and max,min problems.

Comparison of numerical expressions.
Problem 8.1(Met. Rec.)
a) 3111 < 3211 = 255 < 256 = 1614 < 1714;
b) 51318 > 51218 = 29�18 = 2162 > 2161 = 27�23 = 12823 > 12723;

c) Particular case of inequality n
1
n > m

1
m if 3 � n < m:
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Su¢ ce to prove n
1
n # N� f1; 2g :

d) Answer: tan 34� >
2

3

Since tan 34� =
1=
p
3 + tan 4�

1� 1=
p
3 tan 4�

and
1=
p
3 + t

1� 1=
p
3 � t

"
�
0;
p
3
�
;

tan 4� = tan
�

45
>
�

45
then

tan 34� =
1=
p
3 + tan (�=45)

1� 1=
p
3 tan (�=45)

>
1=
p
3 + �=45

1� 1=
p
3 � �=45

and

1=
p
3 + �=45

1� 1=
p
3 � �=45

>
2

3
()

p
3 +

�

15
> 2� 2�

45
p
3
()

�

15
+

2�

45
p
3
> 2�

p
3 () �

�
3
p
3 + 2

�
> 45

�
2
p
3� 3

�
:

We have 3
�
3
p
3 + 2

�
> 45

�
2
p
3� 3

�
() 3

p
3 + 2 > 15

�
2
p
3� 3

�
()

3
p
3 + 2

2
p
3� 3

> 15 ()
�
3
p
3 + 2

� �
2
p
3 + 3

�
> 45 () 13

p
3 + 24 > 45 ()

13
p
3 > 21 () 169 � 3 > 441 () 507 > 441:

e) Since 1 2 (0; �=2) and 1 > �=4 then sin 1 > cos 1:

Also since sin
1

2
<
1

2
then cos 1 = 1� 2 sin2 1

2
> 1� 2 �

�
1

2

�2
=
1

2
:

Thus, sin 1 >
1

2
:(Or, since 1 > �=6 then sin 1 > sin�=6 =

1

2
:

From the other hand log3
p
2 =

1

2
log3 2 <

1

2
:

Hence, sin 1 >
1

2
> log3

p
2:

f) Solution1.
Since n � 1 � 2 then logn�1 n > logn (n+ 1) () 1 > logn (n� 1) �

logn (n+ 1) ()

1 > logn n

�
1� 1

n

�
�logn n

�
1 +

1

n

�
() 1 >

�
1 + logn

�
1� 1

n

���
1 + logn

�
1 +

1

n

��
()

1 > 1 + logn

�
1� 1

n

�
+ logn

�
1 +

1

n

�
+ logn

�
1� 1

n

�
logn

�
1 +

1

n

�
()

0 > logn

�
1� 1

n2

�
+ logn

�
1� 1

n

�
logn

�
1 +

1

n

�
where latter inequality holds because

logn

�
1� 1

n2

�
< 0; logn

�
1� 1

n

�
< 0 and logn

�
1 +

1

n

�
> 0:

Solution2.

By (2AGM) logn (n� 1)�logn (n+ 1) <
�
logn (n� 1) + logn (n+ 1)

2

�2
()

logn (n� 1) � logn (n+ 1) <
 
logn

�
n2 � 1

�
2

!2
and

logn
�
n2 � 1

�
2

<
logn n

2

2
=
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2 logn n

2
= 1 then logn (n� 1) � logn (n+ 1) < 1 () logn�1 n > logn (n+ 1) :

h) Using Math Induction we will prove that for any natural n holds

inequality n! >
�n
3

�n
:

Note that for n = 1 this inequality obviously holds.

For any n 2 N assuming n! >
�n
3

�n
we obtain (n+ 1)! > (n+ 1)

�n
3

�n
and

(n+ 1)
�n
3

�n
>

�
n+ 1

3

�n+1
() nn

3n
>
(n+ 1)

n

3n+1
()

3 >

�
1 +

1

n

�n
(= 3 > e >

�
1 +

1

n

�n
:

Applying inequality n! >
�n
3

�n
for n = 300 we obtain

300! >

�
300

3

�300
= 100300:

Remark.

Another way to prove inequality 3 >
�
1 +

1

n

�n
without reference to e:

We will prove (using Math Induction) one useful inequality, namely:
For any positive real � and any natural n such that n� � 1 holds inequality
(1) (1 + �)

n
< 1 + n�+ n2�2:

Proof.
For n = 1 inequality obviously holds.
Let n 2 N be any such that (n+ 1)� � 1: Then n� < 1 and assuming
(1 + �)

n
< 1 + n�+ n2�2 we obtain

(1 + �)
n+1

<
�
1 + n�+ n2�2

�
(1 + �) = n2�3+

�
n2 + n

�
�2+(n+ 1)�+1:

Since n� < 1 we have n2�3 = n� � n�2 < n�2 and, therefore,
n2�3 +

�
n2 + n

�
�2 <

�
n2 + 2n

�
�2 < (n+ 1)

2
�2:

Hence, (1 + �)n+1 < 1 + (n+ 1)�+ (n+ 1)2 �2:

Applying inequality (1) to � =
1

n
we obtain

�
1 +

1

n

�n
< 3:

g). Easy to see that (n!)2 = nn for n = 1; 2 and for n = 3 we have
(3!)

2
= 36 > 33: We will prove that (n!)2 > nn for any natural n � 3

using Math Induction in form of Multiplicative Reduction, that is
su¢ ce to prove inequality

((n+ 1)!)
2

(n!)
2 >

(n+ 1)
n+1

nn
() n+ 1 >

�
1 +

1

n

�n
:

Latter inequality immediately follows from 3 >

�
1 +

1

n

�n
;or can

be proved independently with usage of Multiplicative Reduction,
namely we have
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n+ 2

n+ 1
= 1 +

1

n+ 1
>

�
1 +

1

n+ 1

�n+1
�
1 +

1

n

�n ()

�
1 +

1

n

�n
>

�
1 +

1

n+ 1

�n
() 1 +

1

n
> 1 +

1

n+ 1
:

i). Let an :=
q
2 +

p
3 +

p
2 + ::: and bn :=

q
3 +

p
2 +

p
3 + :::

(each use n square root symbols)
We have system of recurrences:�

an+1 =
p
2 + bn

bn+1 =
p
3 + an

; n 2 N where a1 =
p
2; b1 =

p
3:

Note that a1 < b1 and b1 � a1 < 1 and we will prove using Mat. Induction
more stronger inequality 0 < bn � an < 1 for any natural n:
1. Base of induction:

0 <
p
3�

p
2 < 1:

2. Step of Induction.
For any n 2 N in supposition that 0 < bn � an < 1 we we have
bn+1 � an+1 =

p
3 + an �

p
2 + bn =

1� (bn � an)p
2 + bn +

p
3 + an

<
1p

2 +
p
3
< 1 and bn+1 � an+1 > 0:

Proving inequalities
Problem 8.2
Since a+ b+ c = 0 then due to symmetry of inequality we can assume
that sign (a) = sign (b) : Then jcj = ja+ bj = jaj+ j bj and

ja � b � cj = jaj � jbj � (jaj+ j bj) �
�
jaj+ j bj

2

�2
(jaj+ j bj) = (jaj+ j bj)3

4
=

jcj3

4
=
1

4
max

n
jaj3 ; jbj3 ; jcj3

o
because jaj ; j bj � jaj+ j bj = jcj :

Problem 8.3(Met. Rec.).

We have

(1� x) (1� y) (1� z)�1
2
=

�
1

2
� (x+ y + z)

�
+xy (1� z)+z (y + x) z � 0:

Problem 8.4(Problem 6 from 6-th CGMO,2-nd day,2007).
Due to symmetry with respect to b and c we can assume that b � c and
denoting x :=

p
b+

p
c; y :=

p
b�

p
c we obtain x � y � 0; x+ y � 1;

b� c = xy; b+ c = x2 + y2

2
; a = 1� x

2 + y2

2
;

and original inequality becomes

(1)

r
1� x

2 + y2

2
+
x2y2

4
+ x �

p
3;
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where x 2
�
1

2
; 1

�
and y 2 [0; x] :

Since max
y2[0;x]

�
�y

2

2
+
x2y2

4

�
= max

y2[0;x]

 
�
y2
�
2� x2

�
4

!
= 0 then

(1)() max
y2[0;x]

r
1� x

2 + y2

2
+
x2y2

4
+ x �

p
3 ()s

1� x
2

2
+ max
y2[0;x]

�
�y

2

2
+
x2y2

4

�
+ x �

p
3 ()

r
1� x

2

2
+ x �

p
3;

where latter inequality holds because by Cauchy Inequality r
1� x

2

2
+ x

!2
=

 
1 �
r
1� x

2

2
+
p
2 � xp

2

!2
�

�
12 +

�p
2
�2�0@ r1� x2

2

!2
+

�
xp
2

�21A = 3 �
�
1� x

2

2
+
x2

2

�
= 3:

Since in (1) equality occurs i¤ y = 0 and

r
1� x

2

2
� xp

2
= 1�

p
2 ()

y = 0 and x =
2p
3
then original inequality becomes equality i¤

a = b = c =
1

3
:

Remark.
This inequality is sharp variant of inequality

p
a+

p
b+

p
c �

p
3:

Problem 8.5(Met. Rec.)

We have
nP
i=1

ai � ai+2
ai+1 + ai+2

=
nP
i=1

ai + ai+1 � (ai+1 + ai+2)
ai+1 + ai+2

=
nP
i=1

�
ai + ai+1
ai+1 + ai+2

� 1
�
=

nP
i=1

ai + ai+1
ai+1 + ai+2

� n � 0 because by AM-GM Inequality

nP
i=1

ai + ai+1
ai+1 + ai+2

� n n

s
nQ
i=1

ai + ai+1
ai+1 + ai+2

= n:

Problem 8.6(Met. Rec.)

Let S :=
P
cyc

a3

a2 + ab+ b2
:

Since
a3

a2 + ab+ b2
=
a3 � b3 + b3
a2 + ab+ b2

= a� b+ b3

a2 + ab+ b2

then S =
P
cyc

�
a� b+ b3

a2 + ab+ b2

�
=
P
cyc

b3

a2 + ab+ b2

and, therefore,

2S =
P
cyc

a3 + b3

a2 + ab+ b2
=
P
cyc
(a+ b)

a2 � ab+ b2
a2 + ab+ b2

�
P
cyc
(a+ b)�1

3
=
2 (a+ b+ c)

3

because
a2 � ab+ b2
a2 + ab+ b2

� 1

3
() (a� b)2 � 0:

c
1985-2018 Arkady Alt 109



Math Olympiads Training- Problems and solutions.

Problem 8.7(Met. Rec)

By Chebishev�s Inequality we have a5+b5+c5 �
�
a2 + b2 + c2

�
� a
3 + b3 + c3

3

and a2 + b2 + c2 � ab+ bc+ ca; a
3 + b3 + c3

3
� abc:

Problem 8.8(Met. Rec).
Solution 1.
Applying inequality (x+ y + z)2 � 3

�
x2 + y2 + z2

�
; x; y; z 2 R to

(x; y; z) =
�p
4a+ 1;

p
4b+ 1;

p
4c+ 1

�
we obtain�p
4a+ 1 +

p
4b+ 1 +

p
4c+ 1

�2 � 3 (4a+ 1 + 4b+ 1 + 4c+ 1) = 21:
Solution 2.
First note thatp
4a+ 1 +

p
4b+ 1 +

p
4c+ 1 �

p
21 ()�p

4a+ 1 +
p
4b+ 1 +

p
4c+ 1

�2 � 21 ()
4a+ 1 + 4b+ 1 + 4c+ 1 +

P
cyc
2
p
(4a+ 1) (4b+ 1) � 21 ()P

cyc
2
p
(4a+ 1) (4b+ 1) � 14:

Since, by 2AM-GM Inequality
2
p
(4a+ 1) (4b+ 1) � 4a+ 1 + 4b+ 1 = 6� 4c thenP

cyc
2
p
(4a+ 1) (4b+ 1) �

P
cyc
(6� 4c) = 18� 4 = 14:

Solution 3.
Let t > 0 be some undetermined real parameter.
Then using 2AM-GM inequality we obtainP
cyc

p
4a+ 1 =

1p
t

P
cyc

p
t (4a+ 1) � 1

2
p
t

P
cyc
(t+ 4a+ 1) =

7 + 3t

2
p
t
:

So, for any t > 0 holds inequality

(1)
P
cyc

p
4a+ 1 � 7 + 3t

2
p
t

To reach upper bound
7 + 3t

2
p
t
we should claim t = 4a+ 1 = 4b+ 1 = 4c+ 1:

Since a+ b+ c = 1 we obtain 3t = 4 (a+ b+ c) + 3 = 7 () t =
7

3
:

In particular for t =
7

3
inequality (1) becomes

P
cyc

p
4a+ 1 �

7 + 3 � 7
3

2

r
7

3

=
p
21:

Another ending.

We have
P
cyc

p
4a+ 1 � 7 + 3t

2
p
t
()

P
cyc

p
4a+ 1 � min

t>0

7 + 3t

2
p
t
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and
7 + 3t

2
p
t
=
1

2

�
7p
t
+ 3
p
t

�
�
r
7p
t
� 3
p
t = 21 with equality i¤

7p
t
= 3

p
t () t =

7

3
:

Problem 8.9(Met. Rec).
Since (x1 + x2 + :::+ xn + 1)

2 � 4 (x1 + x2 + :::+ xn) ()
(x1 + x2 + :::+ xn � 1)2 � 0

and xi 2 [0; 1] =) xi � x2i ; i = 1; 2; :::; n we have
(x1 + x2 + :::+ xn + 1)

2 � 4 (x1 + x2 + :::+ xn) � 4
�
x21 + x

2
2 + :::+ x

2
n

�
:

Problem 8.10(Met. Rec).
Solution1.
First note that x3z + y3x+ z3y � xyz (x+ y + z) ()
x2

y
+
y2

z
+
z2

x
� x+ y + z:

Applying Cauchy Inequality to triples
�
x
p
y
;
yp
z
;
zp
x

�
;
�p
y;
p
z;
p
x
�

we obtain�
x2

y
+
y2

z
+
z2

x

�
(y + z + x) �

�
x
p
y
� py + yp

z
�
p
z +

zp
x
�
p
x

�2
= (x+ y + z)

2 ()

x2

y
+
y2

z
+
z2

x
� x+ y + z:

Solution2.

Note that for any real a and real b > 0 holds inequality
a2

b
� 2a� b (()

(a� b)2 � 0).

Then
x2

y
+
y2

z
+
z2

x
� 2y � x+ 2y � z + 2z � x = x+ y + z:

Problem 8.11(Met. Rec).

Noting that
x1y1 + x2y1
x1y1 + x1y2

=
y1 (x1 + x2)

x1 (y1 + y2)
;
x2y2 + x1y2
x2y2 + x2y1

=
y2 (x1 + x2)

x2 (y1 + y2)
and using Weighted AM-GM Inequality we obtain that

�
x1y1 + x2y1
x1y1 + x1y2

�x1 �x2y2 + x1y2
x2y2 + x2y1

�x2
�

0BB@
y1 (x1 + x2)

x1 (y1 + y2)
� x1 +

y2 (x1 + x2)

x2 (y1 + y2)
� x2

x1 + x2

1CCA
x1+x2

= 1

for any real positive x1; x2;y1; y2:
Thus, in fact, all solutions of inequality of the problem are solution of equa-

tion �
x1y1 + x2y1
x1y1 + x1y2

�x1 �x2y2 + x1y2
x2y2 + x2y1

�x2
= 1:

By condition of equality in weighted AM-GM Inequality we obtain

c
1985-2018 Arkady Alt 111



Math Olympiads Training- Problems and solutions.

x1y1 + x2y1
x1y1 + x1y2

=
x2y2 + x1y2
x2y2 + x2y1

() y1 (x1 + x2)

x1 (y1 + y2)
=
y2 (x1 + x2)

x2 (y1 + y2)
() y1

x1
=
y2
x2
:

Thus all solution represented by quads (x1; x2;y1; y2) = (x1; x2;tx1; tx2) ;where
x1; x2;t 2 (0;1) :
Another variant of previous solution..
Denoting ui :=

xi
x1 + x2

and vi :=
yi

y1 + y2
i = 1; 2

we obtain that u1 + u2 = v1 + v2 = 1 and
x1y1 + x2y1
x1y1 + x1y2

=
y1 (x1 + x2)

x1 (y1 + y2)
=
v1
u1
;
x2y2 + x1y2
x2y2 + x2y1

=
v2
u2
: Then inequality�

x1y1 + x2y1
x1y1 + x1y2

�x1 �x2y2 + x1y2
x2y2 + x2y1

�x2
� 1 becomes

�
v1
u1

�u1 � v2
u2

�u2
� 1:

Since by weighted AM-GM Inequality�
v1
u1

�u1 � v2
u2

�u2
� v1
u1
� u1 +

v2
u2
� u2 = v1 + v2 = 1

then
�
v1
u1

�u1 � v2
u2

�u2
= 1 and it is possible i¤

v1
u1
=
v2
u2

(condition of equality in AM-GM Inequality).
That is, (v1; v2) = t (u1; u2) () (y1; y2) = t (x1; x2) ; t 2 (0;1) :

And one more proof of inequality
�
v1
u1

�u1 � v2
u2

�u2
� 1

(without weighted AM-GM Inequality).
First note that�
v1
u1

�u1 � v2
u2

�u2
� 1 ()

�
v1
u1

�u1 � v2
u2

�1�u1
� 1 ()

�
v1u2
u1v2

�u1
� u2
v2
:

Applying Bernoulli-2 Inequality (1 + t)� � 1 + t�; t > �1; � 2 (0; ]
to t =

v1u2
u1v2

� 1 and � = u1
we obtain

�
v1u2
u1v2

�u1
� 1+

�
v1u2
u1v2

� 1
�
u1 = 1�u1+

v1u2
v2

= u2+
v1u2
v2

=
u2 (v1 + v2)

v2
=
u2
v2
:

Problem 8.12(Met. Rec).

Let Sn :=
nP
k=1

q
2k � 2

p
k (k � 1)and bn :=

p
n (n+ 1):

First note that S1 =
p
2 = b1:

Also note that S2 =
p
2 +

p
4� 2

p
2 >

p
6 = b2:

Indeed,
p
2 +

p
4� 2

p
2 >

p
6 () 1 +

p
2�

p
2 >

p
3 ()

2�
p
2 >

�p
3� 1

�2 () 2�
p
2 > 4� 2

p
3 () 2

p
3 > 2 +

p
2 ()p

6 >
p
2 + 1 () 6 > 3 + 2

p
2 () 3 > 2

p
2 () 9 > 8:

And we will prove that for any n � 2 holds Sn � Sn�1 > bn � bn�1:
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Indeed,
q
2n� 2

p
n (n� 1) >

p
n (n+ 1)�

p
n (n� 1) ()

2n�2
p
n (n� 1) > 2n2�2n

p
n2 � 1 ()

n2 �
�
n2 � n

�
n+

p
n (n� 1)

>
n4 �

�
n4 � n2

�
n2 + n

p
n2 � 1

()

n

n+
p
n (n� 1)

>
n2

n2 + n
p
n2 � 1

() 1

n+
p
n (n� 1)

>
1

n+
p
n2 � 1

()

n+
p
n2 � 1 > n+

p
n (n� 1) ()

p
n+ 1 >

p
n:

Since S2 > b2 and for any n � 3; assuming that Sn�1 � bn�1 we obtain
Sn = (Sn � Sn�1)+Sn�1 � (bn � bn�1)+bn�1 = bn then by Math Induction
we have Sn > bn for any n � 2 and, therefore, Sn � bn for any n � 1:

Problem 8.13(Met. Rec).

Let sk :=
kP
i=1

ai; k = 1; 2; :::; n and f (x) :=
p
1� x2 then

Fn :=
nP
k=1

ak

s
1�

�
kP
i=1

ai

�2
=

nP
k=1

(sk � sk�1)
p
1� s2k =

nP
k=1

(sk � sk�1) f (sk)

is Riemann sum for function f (x) =
p
1� x2 and partition

0 = s0 < s1 < s2 < ::: < sn = 1 of the segment [0; 1] :
Since, f (x) # [0; 1] then
nP
k=1

(sk � sk�1) f (sk) <
1R
0

p
1� x2dx = [x = sin t; dx = cos t � dt] =

�=2R
0

cos2 tdt =
1

2

�=2R
0

(1 + cos 2t) dt =
1

2

�
t+

sin 2t

2

��=2
0

=
�

4
<
4

5
because 5� < 16:

Problem 8.14(Met. Rec).

If n = 2 then a1a2 + a2a1 �
(a1 + a2)

2

2
() (a1 � a2)2 � 0;

If n = 3 then 1a2 + a2a3 + a3a1 �
(a1 + a2 + a3)

2

3
()

(a1 � a2)2 + (a2 � a3)2 + (a3 � a1)2 � 0;
Let n > 3:
Due to cyclic symmetry of the inequality we can suppose that
minfa1; a2; :::; ang = a1:

Then we have
a1a2 + a2a3 + :::+ an�1an + ana1 � a1a2 + a2a3 + :::+ an�1an + an�3an �

nP
i�odd

ai �
nP

j�even
aj �

(a1 + a2 + :::+ an)
2

4
because in the each term aiai+1; i = 1; 2; :::; n� 1
and an�3an one factor has odd index, other has even index.
Equality occurs, for example, if a1 = a2 and all other ai = 0; i = 3; :::; n:

c
1985-2018 Arkady Alt 113



Math Olympiads Training- Problems and solutions.

Problem 8.15.(Met. Rec).Original setting.

Let S = S (a1; a2; :::; an) :=
nP

1�i<j�n
jai � aj j : Since jai � aij = 0; i 2 f1; 2; :::; ng

then
nP
i=1

nP
j=1

jai � aj j = 2S () S =
1

2

nP
i=1

nP
j=1

jai � aj j and, therefore,

S (a1; a2; :::; an) is independent from permutations of (a1; a2; :::; an)
and for any real a holds
S (a1 + a; a2 + a; :::; an + a) = S (a1; a2; :::; an).

Thus,max fS (a1; a2; :::; an) j a1; a2; :::; an 2 R and jai � aj j � 2; i; j 2 f1; 2; :::; ngg =
max fS (a1; a2; :::; an) j 0 � a1 � a2 � ::: � an � 2 g :

Since 0 � a1 � a2 � ::: � an � 2 then S =
nP

1�i<j�n
jai � aj j =

nP
1�i<j�n

(aj � ai) =

nP
j=2

j�1P
i=1

aj �
n�1P
i=1

nP
j=i+1

ai =
nP
j=2

(j � 1) aj �
n�1P
i=1

(n� i) ai =

(n� 1) an +
n�1P
j=2

(j � 1) aj � (n� 1) a1 �
n�1P
i=2

(n� i) ai =

(n� 1) (an � a1) +
n�1P
i=2

(2i� 1� n) ai:

If n = 2 then
n�1P
i=2

(2i� 1� n) ai = 0 and

S =
1

2
(2� 1) (an � a1) �

1

2
(2� 0) = 1:

Let n � 3:Since an � a1 � 2� 0 = 2 and 2i� 1� n � 0 () i �
hn
2

i
+ 1;

n+ 1� 2i � 1 () i �
hn
2

i
then

S = (n� 1) (an � a1) +
n�1P

i=[n2 ]+1
(2i� 1� n) ai �

[n2 ]P
i=2

(n+ 1� 2i) ai �

2 (n� 1) + 2
n�1P

i=[n2 ]+1
(2i� 1� n) :

Consider now two cases:

1. If n = 2m then
n�1P

i=[n2 ]+1
(2i� 1� n) =

2m�1P
i=m+1

(2i� 1� 2m) =
2m�1P
i=m+1

(2 (i�m)� 1) =

m�1P
i=1

(2i� 1) = (m� 1)2 and, therefore, S � 2 (2m� 1)+2 (m� 1)2 = 2m2:

2. If n = 2m�1 then
n�1P

i=[n2 ]+1
(2i� 1� n) =

2m�2P
i=m

(2i� 2m) = 2
2m�2P
i=m+1

(i�m) =

2
m�2P
i=1

i = (m� 2) (m� 1) and, therefore,

S � 2 (2m� 2) + 2 (m� 2) (m� 1) = 2m (m� 1) :

Thus, S �
�

2m2 if n = 2m
2m (m� 1) if n = 2m� 2 :
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Since,
�
n2

2

�
=

�
2m2 if n = 2m

2m (m� 1) if n = 2m� 1 then S �
�
n2

2

�
:

Noting that S (a1; a2; :::; an) =
�
n2

2

�
for

a1 = a2 = ::: = a[n2 ]
= 0; a[n2 ]+1

= ::: = an = 2

we conclude that maxS (a1; a2; :::; an) =
�
n2

2

�
:

Hence,
nP
i=1

nP
j=1

jai � aj j � 2
�
n2

2

�
� n2:

Problem 8.16 (MR S97as modi�cation)

Let t := (x1x2:::xn)
2
n then by AM-GM Inequality

1 =
x1 + x2 + :::+ xn

n
� n
p
x1x2:::xn =) t � 1:

Since

x21+x
2
2+ :::+x

2
n = (x1 + x2 + :::+ xn)

2� 2
P

1�i<j�n
xixj = n

2� 2
P

1�i<j�n
xixj

and by AM-GM Inequality

P
1�i<j�n

xixj �
�
n

2

� Q
1�i<j�n

xixj

! 1

(n2)
=

�
n

2

��
nQ
k=1

xn�1k

� 2
n(n�1)

=

n (n� 1)
2

nQ
k=1

x
2
n
k =

n (n� 1)
2

then x21 + x
2
2 + :::+ x

2
n � n2 � n (n� 1) t and

x21x
2
2:::x

2
n

�
x21 + x

2
2 + :::+ x

2
n

�
� tn

�
n2 � n (n� 1) t

�
;

Thus su¢ ces to prove
tn
�
n2 � n (n� 1) t

�
� n () ntn � (n� 1) tn+1 � 1 ()

(n� 1) tn+1 � ntn + 1 � 0 for any t 2 [0; 1] :
Latter inequality holds because
(n� 1) tn+1 � ntn + 1 = (n� 1) tn (t� 1)� (tn � 1) =
(t� 1)

�
(n� 1) tn �

�
1 + t+ :::+ tn�1

��
= (1� t)

�
1 + t+ :::+ tn�1 � (n� 1) tn

�
�

(1� t)
�
ntn�1 � (n� 1) tn

�
= tn�1 (1� t) (1 + (n� 1) (1� t)) � 0:

F Problem 8.17 (W6 J Wildt IMO, 2014)

Let S (xN) :=
1P
n=1

x3n
xn + 4xn+1

if series converges and Sf (xN) = 1 if it

diverges.
Let eD1 = fxN j xN 2 D1 and S (xN) 6=1g :Since eD1 isn�t empty
(because for for instance if xn = qn�1; n 2 N; where q 2 (0; 1) ; we have
1P
n=1

x3n
xn + 4xn+1

=
1P
n=1

q3(n�1)

qn�1 + 4qn
=

1P
n=1

q2(n�1)

1 + 4q
=

1

(1 + 4q) (1� q2)
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then inf fS (xN) j xN 2 D1g = inf
n
S (xN) j xN 2 eD1o :

Let S := inf
n
S (xN) j xN 2 eD1o : For any xN 2 eD1 we have

S (xN) =
1P
n=1

x3n
xn + 4xn+1

=
1

1 + 4x2
+

1P
n=2

x3n
xn + 4xn+1

=

1

1 + 4x2
+ x22

1P
n=1

y3n
yn + 4yn+1

=
1

1 + 4x2
+ x22 � S (yN) ;

where yn :=
xn+1
x2

; n 2 N:

Since yN 2 eD1 (1 = y1 > y2 > :::: > yn > ::: and S (yN) = S (xN)

x22
� 1

1 + 4x2
)

then S (yN) � S and, therefore, S (xN) �
1

1 + 4x2
+ x22S =)

S � 1

1 + 4x2
+ x22S () S � 1

(1 + 4x2) (1� x22)
:

We will �nd � := max
x2(0;1)

h (x) ; where

h (x) := (1 + 4x)
�
1� x2

�
= �4x3 � x2 + 4x+ 1.

Since h0 (x) = �12x2 � 2x+ 4 = �2 (3x+ 2) (2x� 1) then

� = max
x2(0;1)

h (x) = h

�
1

2

�
=
9

4
and, therefore, S (xN) �

1

�
=
4

9
:

Since S (xN) =
1

(1 + 4q) (1� q2) for xn = q
n�1; n 2 N; q 2 (0; 1) ;

then for q =
1

2
we obtain

1P
n=1

x3n
xn + 4xn+1

=
1�

1 + 4 � 1
2

� 
1�

�
1

2

�2! =
4

9
:

F Problem 8.18(SSMJ 5345)
Indeed, ja cosx+ b cos yj �

p
a2 + b2 + 2ab cos (x+ y) ()

(a cosx+ b cos y)
2 � a2 + b2 + 2ab cos (x+ y) ()

a2 cos2 x+ b2 cos2 y + 2ab cosx cos y � a2 + b2 + 2ab cos (x+ y) ()
0 � a2 sin2 x+ b2 sin2 y + 2ab (cos (x+ y)� cosx cos y) ()
0 � (a sinx� b sin y)2 :
Equality occurs i¤ a sinx� b sin y = 0 () a sinx = b sin y:

Let ' := x+ y;then sinx� sin y = 1

a
� 1
b
= bc� ca ()

sinx = kbc; sin y = kca and sin y = sin ('� x) ()
sin y = sin' cosx�cos' sinx () kca = sin'

p
1� k2b2c2�kbc cos' ()

(kca+ kbc cos')
2
= sin2 '� k2b2c2 sin2 ' ()

k2c2a2 + k2b2c2 cos2 '+ 2abc2 cos' = sin2 '� k2b2c2 sin2 ' ()

k2c2
�
a2 + b2 + 2ab cos'

�
= sin2 ' () k2 =

sin2 '

c2 (a2 + b2 + 2ab cos')
:

Hence, cos2 x = 1� k2b2c2 = 1� b2 sin2 '

a2 + b2 + 2ab cos'
=

(a+ b cos')
2

a2 + b2 + 2ab cos'
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and cos2 y = 1� k2c2a2 = (b+ a cos')
2

a2 + b2 + 2ab cos'
:

(Obviously that
(a+ b cos')

2

a2 + b2 + 2ab cos'
� 1 and (b+ a cos')

2

a2 + b2 + 2ab cos'
):

F Problem 8.19.
Solution 1.
Lemma 1.
For any positive real x and any natural n holds inequality

(1)
xn + xn�1 + :::+ x

n
� xn+1 + 1

2
:

Proof.
Since

�
xn+1�k � 1

� �
xk � 1

�
� 0; k = 1; 2; :::; n and

nP
k=1

�
xn+1�k � 1

� �
xk � 1

�
=

nP
k=1

�
xn+1 + 1� xk � xn+1�k

�
=

nP
k=1

�
xn+1 + 1

�
�

nP
k=1

�
xk + xn+1�k

�
=

n
�
xn+1 + 1

�
� 2

nP
k=1

xk then n
�
xn+1 + 1

�
� 2

nP
k=1

xk � 0 () (1).

Lemma 2.
For any positive real x and any natural n holds inequality

(2)
xn + xn�1 + :::+ x+ 1

n+ 1
�
�
x+ 1

2

�n
:

Proof.(Math Induction by n).
For n = 1 inequality (1) obviously holds.
Let n 2 N. From supposition that (2) right follows�
x+ 1

2

�n+1
� xn + xn�1 + :::+ x+ 1

n+ 1
� x+ 1

2
and inequality (1) yields

xn + xn�1 + :::+ x+ 1

n+ 1
� x+ 1

2
� xn+1 + xn + :::+ x+ 1

n+ 2
:

Indeed,
(n+ 2) (x+ 1)

�
xn + xn�1 + :::+ x+ 1

�
� 2 (n+ 1)

�
xn+1 + xn + :::+ x+ 1

�
()

(n+ 2)
�
xn+1 + 2xn + :::+ 2x+ 1

�
� 2 (n+ 1)

�
xn+1 + xn + :::+ x+ 1

�
()

2 (xn + :::+ x) � n
�
xn+1 + 1

�
:

Since by AM-GM Inequality n
p
n! � 1 + 2 + :::+ n

n
=
n+ 1

2
()

n! �
�
n+ 1

2

�n
and by (2)

nm + nm�1 + :::+ n+ 1

m+ 1
�
�
n+ 1

2

�m
then�

nm + nm�1 + :::+ n+ 1

m+ 1

�n
�
�
n+ 1

2

�mn
� (n!)m :

Solution 2.
Lemma 1.
For any a 2 [0; 1] and n 2 N holds inequality
(3) (1 + a)

n � (1� a)n � 2na:
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with equality condition in both inequalities a = 0 or n = 1:
Proof.
By inequality Bernoulli (1� a)k � 1�ka for any k = 1; 2; :::n�1 we obtain
(1 + a)

n � 1 = a
�
(1 + a)

n�1
+ (1 + a)

n�2
+ :::+ (1 + a) + 1

�
�

a ((1 + (n� 1) a) + (1 + (n� 2) a) + :::+ (1 + a) + 1) = a (n+ a (1 + 2 + :::+ (n� 1))) =

a

�
n+

n (n� 1)
2

a

�
= an+

n (n� 1)
2

a2 and

1� (1� a)n = a
�
(1� a)n�1

�
+ (1� a)n�2 + :::+ (1� a) + 1) �

a ((1� (n� 1) a) + (1� (n� 2) a) + :::+ (1� a) + 1) = a (n� a (1 + 2 + :::+ (n� 1))) =

an� n (n� 1)
2

a2:

Thus, we have two inequalities

(4) (1 + a)
n � 1 + na+ n (n� 1)

2
a2 and

(5) (1� a)n � 1 � na + n (n� 1)
2

a2; with a = 0 or n = 1 as equality

condition
in both inequalitiws.
For any natural n and any a 2 [0; 1] from inequalities (4) and (5) immedi-

ately
follows inequality (3).

Lemma 2.
For any natural n and any non-negative x and y holds inequality

(6)
xn + xn�1y + :::+ xyn�1 + yn

n+ 1
�
�
x+ y

2

�n
:

Proof.
Due symmetry we can suppose that x � y and excluding trivial cases
x = 0 and x = y we assume that 0 < x < y:

Then for a :=
y � x
y + x

holds 0 < a < 1:

Plugging this a in inequality (3) we obtain�
1 +

y � x
y + x

�n+1
�
�
1� y � x

y + x

�n+1
� 2 (n+ 1) y � x

y + x
()

2n+1

(x+ y)
n (y

n � xn) � 2 (n+ 1) y � x
y + x

() yn � xn
(n+ 1) (y � x) �

�
x+ y

2

�n
()

xn + xn�1y + :::+ xyn�1 + yn

n+ 1
�
�
x+ y

2

�n
:

In particularly, if y = 1 we obtain inequality

(7)
xn + xn�1 + :::+ x+ 1

n+ 1
�
�
x+ 1

2

�n
:

Since by AM-GM Inequality
n
p
n! � 1 + 2 + :::+ n

n
=
n+ 1

2
() n! �

�
n+ 1

2

�n
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and by (7)
nm + nm�1 + :::+ n+ 1

m+ 1
�
�
n+ 1

2

�m
then�

nm + nm�1 + :::+ n+ 1

m+ 1

�n
�
�
n+ 1

2

�mn
� (n!)m :

Problem 8.20(Met. Rec).
Note that (n+ 1) cos

�

n+ 1
� n cos �

n
> 1 ()

(n+ 1) cos
�

n+ 1
� (n+ 1) > n cos �

n
� n ()

n+ 1

�
cos

�

n+ 1
� n+ 1

�
>
n

�
cos

�

n
� n
�
:

let g (x) :=
cosx

x
� 1

x
:We will prove that g (x) decrease on (0; �=2) :

Let 0 < x < x+ h < �=2:

Then g (x+ h)� g (x) = cos (x+ h)

x+ h
� 1

x+ h
� cosx

x
+
1

x
=

x cos (x+ h)� (x+ h) cosx+ h
x (x+ h)

=
x (cos (x+ h)� cosx) + h (1� cosx)

x (x+ h)
=

�2x sin
�
x+

h

2

�
sin

h

2
+ 2h sin2

x

2

x (x+ h)
<
�2x sinx sin h

2
+ 2h sin2

x

2
x (x+ h)

=

�
4 sinx

�
h

2
tan

x

2
� x
2
sin

h

2

�
x (x+ h)

< 0 because

h

2
> sin

h

2
and tan

x

2
>
x

2
:

Since
�

n+ 1
<
�

n
then g

�
�

n+ 1

�
> g

��
n

�
()

n+ 1

�
cos

�

n+ 1
� n+ 1

�
>
n

�
cos

�

n
� n
�
:

Finding maximum,minimum and range.

Problem 8.21(82-Met. Rec).
Solution 1.

First note that
x2 � 2x+ 1
6x2 � 7x+ 3 =

(x� 1)2

6x2 � 7x+ 3 � 0 for all real x because

discriminant of quadratic trinomial 6x2 � 7x+ 3 is negative.

Also note that min
x2R

�x2 + 2x� 1
6x2 � 7x+ 3 = �maxx2R

(x� 1)2

6x2 � 7x+ 3 =

� max
x2R�f1g

(x� 1)2

6x2 � 7x+ 3 (because
(x� 1)2

6x2 � 7x+ 3 = 0 () x = 1 and

(x� 1)2

6x2 � 7x+ 3 > 0 for any x 2 R� f1g).
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Since 6x2 � 7x+ 3 = 6 (x� 1)2 + 5 (x� 1) + 2 then for
x 2 R� f1g ; denoting t := 1

x� 1 ; we obtain

(x� 1)2

6x2 � 7x+ 3 =
(x� 1)2

6 (x� 1)2 + 5 (x� 1) + 2
=

1

6 + 5t+ 2t2

and, therefore,

min
x6=1

�x2 + 2x� 1
6x2 � 7x+ 3 = �maxt6=0

1

6 + 5t+ 2t2
= � 1

min
t6=0

(6 + 5t+ 2t2)
:

Since 6 + 5t+ 2t2 = 2 (t+ 5=4)2 + 23=8 then min
t6=0

�
6� 5t+ 2t2

�
= 23=8:

Thus, min
x6=1

�x2 + 2x� 1
6x2 � 7x+ 3 = �

8

23
and is reached if

1

x� 1 = �
5

4
() x =

1

5
:

Solution 2.

Let h (x) :=
x2 � 2x+ 1
6x2 � 7x+ 3 :

Since Range (h (x)) = ft j t 2 R and h (x) = t is solvable in x 2 Rg
and 6x2 � 7x+ 3 > 0 for any x 2 R then

h (x) = t () x2 � 2x+ 1 = t
�
6x2 � 7x+ 3

�
()

(1) (6t� 1)x2 � (7t� 2)x+ 3t� 1 = 0:
If t = 1=6 then equation (1) becomes � 5

6
x� 1

2
= 0 () x = �3

5
:

So, 1=6 2 Range (h (x)) :
If t 6= 1=6 then quadratic equation (1) solvable i¤ it�s discrimianant
D � 0;that is i¤ (7t� 2)2 � 4 (6t� 1) (3t� 1) � 0 () 8t� 23t2 � 0 ()
t (23t� 8) � 0 () t 2 [0; 8=23]� f1=6g :
Thus, Range (h (x)) = [0; 8=23] and, therefore,

min
x2R

�x2 + 2x� 1
6x2 � 7x+ 3 = ��maxx2R

h (x) = � 8

23
:

Problem 8.22 (83-Met. Rec).
Note that

max
x;y>0

fmin fx; 1=y; y + 1=xgg = max ft j t > 0 and 9 (x; y > 0) [x; 1=y; y + 1=x] � tg :

Also

min fx; 1=y; y + 1=xg � t ()

8<: x � t
1=y � t

y + 1=x � t
()

8>><>>:
x � t
y � 1=t

t� 1=x � y
t� 1=x � 1=t

()

�
t� 1=t � 1=x � 1=t
t� 1=x � y � 1=t =) t� 1=t � 1=t () t2 � 2 () t �

p
2:

max t =
p
2 and attained if x =

p
2; y = 1=

p
2:

Problem 8.23(58-Met. Rec.).

c
1985-2018 Arkady Alt 120



Math Olympiads Training- Problems and solutions.

Let remk (n) be remainder from division n by k: We will prove that

max

�
remk (n)

... k 2 f1; 2; :::; ng
�
=

�
n� 1
2

�
:

Note that remk (n) = n� k
hn
k

i
and n =

hn
2

i
+

�
n� 1
2

�
+ 1:

Also note that su¢ ces to prove inequality remk (n) �
�
n� 1
2

�
for any k �

hn
2

i
:

Indeed, since k �
hn
2

i
+1 =) k >

n

2
() n�k < k and n = 1�k+(n� k),

we have remk (n) = n� k � n�
�hn
2

i
+ 1
�
=

�
n� 1
2

�
.

Let 1 � k �
hn
2

i
then remk (n) �

�
n� 1
2

�
()hn

2

i
+

�
n� 1
2

�
+ 1� k

hn
k

i
�
�
n� 1
2

�
()

hn
2

i
+ 1 � k

hn
k

i
()

hn
2

i
+ 1

k
�
hn
k

i
()24

hn
2

i
+ 1 + (k � 1)

k

35 � hn
k

i
()2664

�
n+ 2k

2

�
k

3775 � hnk i ()
�
n+ 2k

2k

�
�
hn
k

i
:

If k = 1 latter inequality becomes
�
n+ 2

2

�
� n ()

hn
2

i
+ 1 � n ()

1 �
�
n+ 1

2

�
and obviously holds for any n � 2:

If 2 � k �
hn
2

i
then

n+ 2k

2k
� n

k
() n+ 2k

2
� n () n+2k � 2n ()

k �
hn
2

i
:

Thus, for any k 2 f1; 2; :::; ng holds inequality remk (n) �
�
n� 1
2

�
and

since for k =
hn
2

i
+ 1 we have n = 1 � k +

�
n� 1
2

�
and

�
n� 1
2

�
< k then

max remk (n) =

�
n� 1
2

�
:

Remark.
Here was used the following properties of [x] (integer part of x):
1. a � b =) [a] � [b] :
Proof.
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Since [a] � a and a � b then [a] � b =) [a] 2
�
t
... t 2 Z and t � b

�
and,

therefore, [a] � max
�
t
... t 2 Z and t � b

�
= [b] :

2. For any n 2 Z holds identity n =
hn
2

i
+

�
n+ 1

2

�
:

Proof.

If n = 2k then
hn
2

i
+

�
n+ 1

2

�
=

�
2k

2

�
+

�
2k + 1

2

�
=

k +

�
k +

�
1

2

��
= 2k;

If n = 2k + 1 then
hn
2

i
+

�
n+ 1

2

�
=

�
2k + 1

2

�
+

�
2k + 2

2

�
=�

k +

�
1

2

��
+ k + 1 = 2k + 1:

3. For any x 2 R and n 2 N holds identity
�
[x]

n

�
=
hx
n

i
:

Proof.
p :=

hx
n

i
then p � x

n
< p+ 1 () np � x < np+ n:

Since np 2
�
t
... t 2 Z and t � x

�
then np � [x] = max

�
t
... t 2 Z and t � x

�
and we have np � [x] � x < np+ n =)

np � [x] < np+ n () p � [x]

n
< p+ 1 ()

�
[x]

n

�
= p:

Problem 8.24
Note that F (x; y; z) = max fjcosx j+ jcos 2yj ; jcos y j+ jcos 2zj ; jcos z j+ jcos 2xjg �

(jcosx j+ jcos 2yj) + (jcos y j+ jcos 2zj) + (jcos z j+ jcos 2xj)
3

=

(jcosx j+ jcos 2xj) + (jcos y j+ jcos 2yj) + (jcos z j+ jcos 2zj)
3

� M +M +M

3

where M = min
t
(jcos t j+ jcos 2tj) = jcos t0 j+ jcos 2t0j for some t0:

So, F (x; y; z) �M for all real x; y; z and min
x;y;z

F (x; y; z) =M because

F (t0; t0; t0) =M and for solving our problem we need to �nd
min
t
(jcos t j+ jcos 2tj) :

Denote u := jcos t j ; then u 2 [0; 1] and jcos t j+ jcos 2tj = u+
��2u2 � 1�� :

There are many ways to �nd min
u2[0;1]

�
u+

��2u2 � 1��� ; but I prefer the
following way:

u+
��2u2 � 1�� = u+ ����u� 1p

2

���� ��2u+p2 �� � u+ ����u� 1p
2

���� � 1p
2
; because

2u+
p
2 �

p
2 > 1 and for arbitrary real a; b inequality a+ ja� bj � b holds.

Let�s compare this way with a traditional way:
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��2u2 � 1�� =
8><>:
2u2 � 1 for

1p
2
� u � 1

1� 2u2 for 0 � u � 1p
2

������� :
Therefore min

u2[0;1]

�
u+

��2u2 � 1��� = min�min1 �2u2 + u� 1� ;min 2

�
1 + u � 2u2

�	
1. Let

1p
2
� u � 1; then 2u2 + u� 1 increases on

�
1p
2
; 1

�
(because

x-coordinate of parabola�s vertex is less than 0 and, therefore,

min1
�
2u2 + u� 1

�
= 2 �

�
1p
2

�2
+

1p
2
� 1 = 1p

2
;

2. Let 0 � u � 1p
2
; thenmin 2

�
1 + u � 2u2

�
= min

�
1;
1p
2

�
=

1p
2
; because

function 1+ u � 2u2 have only local maximum 1

4
on the segment

�
0;
1p
2

�
.

So minimum can be obtained on the boundaries of the segment.
:
Problem 8.25 (M1067 Kvant)
Solution 1.
First we will �nd numbers p; q such that

x

1� x2 � px+ q ()

x � (px+ q)
�
1� x2

�
for any positive x with equality for x =

1p
3
:

Let h (x) := x� (px+ q)
�
1� x2

�
: We claim h

�
1p
3

�
= h0

�
1p
3

�
= 0:

Then we have h
�
1p
3

�
= 0 () 1p

3
=

�
pp
3
+ q

��
1� 1

3

�
()

1p
3
=

�
pp
3
+ q

�
2

3
()

p
3

2
=

pp
3
+ q;

h0
�
1p
3

�
= 0 () 1 = p

�
1� 1

3

�
� 2 � 1p

3

�
pp
3
+ q

�
()

1 =
2p

3
� 2 � 1p

3

p
3

2
() 2 =

2p

3
() p = 3 =)

p
3

2
=

3p
3
+ q () q =

�
p
3

2
:

And then x�
 
3x�

p
3

2

!�
1� x2

�
= 3

�
x+

1

2

p
3

��
x� 1p

3

�2
:

So,
x

1� x2 � 3x�
p
3

2
for any x � 0 and, therefore,

P
cyc

x

1� x2 �
P
cyc

 
3x�

p
3

2

!
= 3 (x+ y + z)� 3

p
3

2
:

Since (x+ y + z)2 � 3 (xy + yz + zx) = 3 () x+ y + z �
p
3

then 3 (x+ y + z)� 3
p
3

2
� 3

p
3� 3

p
3

2
=
3
p
3

2
:

Solution 2.
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Since x; y; z 2 (0; 1) then
P
cyc

x

1� x2 =
P
cyc

1P
k=1

x2k�1 =
1P
k=1

P
cyc
x2k�1

and by PM-AM Inequality

we have
1

3

P
cyc
x2k�1 �

�
x+ y + z

3

�2k�1
()

P
cyc
x2k�1 � (x+ y + z)

2k�1

32(k�1)
:

Also we have (x+ y + z)2 � 3 (xy + yz + zx) = 3 () x+ y + z �
p
3:

Then
P
cyc
x2k�1 �

�p
3
�2k�1

32(k�1)
=
3
p
3

3k
and, therefore,

P
cyc

x

1� x2 �
1P
k=1

3
p
3

3k
= 3

p
3 � 1=3

1� 1=3 =
3
p
3

2
:

Solution 3.
Let h (x) =

x

1� x2 :Since h
0 (x) =

1

(1� x)2
+

1

(1 + x)
2 > 0 and

h00 (x) =
2

(1� x)3
� 2

(1 + x)
3 =

4x �
�
x2 + 3

�
(1� x)3 (x+ 1)3

> 0 for x 2 (0; 1)

then h (x) is concave up and increasing on (0; 1) :
Hence, by Jensen�s Inequality

h (x) + h (y) + h (z)

3
� h

�
x+ y + z

3

�
:

Since (x+ y + z)2 � 3 (xy + yz + zx) = 3 () x+ y + z �
p
3 and

h (x) increasing on (0; 1) then

h

�
x+ y + z

3

�
� h

 p
3

3

!
=

p
3

2
and, therefore, h (x)+h (y)+h (z) � 3

p
3

2
:

Solution 4.

By Cauchy Inequality
P
cyc

x

1� x2 =
P
cyc

x2

x� x3 �
(x+ y + z)

2

x+ y + z � (x3 + y3 + z3) =
:
Since (x+ y + z)2 � 3 (xy + yz + zx) = 3 () x+ y + z �

p
3 and

x3 + y3 + z3 � (x+ y + z)
3

9
� x+ y + z

3
then

x3 + y3 + z3

x+ y + z
� 1

3

and
(x+ y + z)

2

x+ y + z � (x3 + y3 + z3) =
x+ y + z

1� x
3 + y3 + z3

x+ y + z

�
p
3

1� 1
3

=
3
p
3

2
:

FProblem 8.26**

Let n = 3: We have
1

1 + x1
+

1

1 + x2
+

1

1 + x3
= 1 ()

3+2 (x1 + x2 + x3)+x1x2+x2x3+x3x1 = 1+x1+x2+x3+x1x2+x2x3+
x3x1 + x1x2x3 () 2 + x1 + x2 + x3 = x1x2x3:
Since x1 + x2 + x3 � 3 3

p
x1x2x3 then x1x2x3 � 2 + 3 3

p
x1x2x3 ()�

3
p
x1x2x3 � 2

� �
3
p
x1x2x3 + 1

�2 � 0 ()
3
p
x1x2x3 � 2 � 0 () x1x2x3 � 23:

Or, by another way:

Since
1

1 + x1
+

1

1 + x2
+

1

1 + x3
= 1 () 1

1 + x1
+

1

1 + x2
=

x3
1 + x3

()

c
1985-2018 Arkady Alt 124



Math Olympiads Training- Problems and solutions.

1 + x3
1 + x1

+
1 + x3
1 + x2

= x3 =) x3 � 2 (1 + x3)
r

1

1 + x1
:

1

1 + x2
=

2 (1 + x3)p
(1 + x1) (1 + x2)

:

Similarly we obtain x2 �
2 (1 + x2)p

(1 + x3) (1 + x1)
; x1 �

2 (1 + x1)p
(1 + x2) (1 + x3)

:

Hence,

x1x2x3 �
23 (1 + x1) (1 + x2) (1 + x3)p

(1 + x2) (1 + x3) �
p
(1 + x3) (1 + x1) �

p
(1 + x1) (1 + x2)

= 23:

Using idea of this way we can prove general case.
We have for any k = 1; 2; :::; n
nP
i=1

1

1 + xi
= 1 ()

nP
i=1;i 6=k

1

1 + xi
=

xk
1 + xk

()
nP

i=1;i 6=k

1 + xk
1 + xi

= xk:

Then by AM-GM Inequality

xk =
nP

i=1;i 6=k

1 + xk
1 + xi

� (n� 1) n�1

s
nQ

i=1;i 6=k

1 + xk
1 + xi

()

ak �
(n� 1) (1 + xk)

n�1

s
nQ

i=1;i 6=k
(1 + xi)

; k = 1; 2; :::; n:

Let P :=
nQ
k=1

(1 + xk) : Since
nQ

i=1;i 6=k
(1 + xi) =

P

1 + xk
then

nQ
k=1

nQ
i=1;i 6=k

(1 + xi) =
Pn

nQ
k=1

(1 + xk)
= Pn�1 and, therefore,

nY
k=1

xk �
nY
k=1

(n� 1) (1 + xk)

n�1

s
nQ

i=1;i 6=k
(1 + xi)

=

(n� 1)n
nQ
k=1

(1 + xk)

n�1

s
nQ
k=1

nQ
i=1;i 6=k

(1 + xi)

=
(n� 1)n P
n�1p

Pn�1
= (n� 1)n

:

9. Invariants.
Problem 9.1(65-Met. Rec.).

a) If in initial fraction
a

b
parity of numerator and denominator is di¤erent

then parity of numerator and denominator of the fraction after transformations
a

b
7! a� b

b
;
a+ b

b
;
b

a
remains di¤erent as well.

Hence, starting with fraction 1=2 and using such transformation
the fraction 67/91 can0t be obtained.
b) By the same reason as in a) can�t be obtained the pair (5=6; 9=11) :
c) Note that number S (a; b; c) = a2 + b2 + c2 is invariant of allowed trans-

formations. Indeed, let (a; b; c) be transformed to
�
a+ bp
2
;
a� bp
2
; c

�
then
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S

�
a+ bp
2
;
a� bp
2
; c

�
=

�
a+ bp
2

�2
+

�
a� bp
2

�2
+c2 = a2+b2+c2 = S (a; b; c) :

Since S
��
2;
p
2; 1=

p
2
��
= 4 + 2 +

1

2
=
13

2
and

S
�
1;
p
2;
p
2� 1

�
= 1 + 2 + 3� 2

p
2 = 6� 2

p
2

then to obtain the triple
�
1;
p
2;
p
2� 1

�
isn�t possible.:

Problem 9.2(66-Met. Rec.).

Let a triple (a; b; c) of non-negative integer numbers represent
state of population of chameleons on Rainbow Island, namely
a; b; and c�are numbers of red, green and yellow chameleons,
respectively. Then (a0; b0; c0) = (13; 15; 17) is initial population
of chameleons; (a; b; c) is a current population.
Let (af ; bf ; cf ) be prospective �nal population of chameleons,
that is (af ; bf ; cf ) = (15; 15; 15) :
Meeting of 2 chameleons of di¤erent colors we will call
productive meeting.
Let Ti (a; b; c) ; i = 1; 2; 3 be population after productive meeting
of chameleons from population (a; b; c) :
Possible three kind of transformation of (a; b; c) : :
T1 (a; b; c) = (a� 1; b� 1; c+ 2) or T2 (a; b; c) = (a� 1; b+ 2; c� 1) or
T3 (a; b; c) = (a+ 2; b� 1; c� 1).
We will consider states of chameleon�s populations by modulo 3.
Note that (a0; b0; c0) � (1; 0;�1) (mod 3) and
Ti (a; b; c) � (a� 1; b� 1; c� 1) (mod 3) ; i = 1; 2; 3:
Let (ai; bi; ci) = Ti (a; b; c) ; i = 1; 2; 3:
Since ai + bi + ci � a+ b+ c (mod 3) then rem3 (a+ b+ c) is invariant
of transformations Ti; i = 1; 2; 3:But this invariant isn�t sensitive
enough because rem3 (a0 + b0 + c0) = 0 and
rem3 (af + bf + cf ) = 0 as well (coincidence of initial and �nal
states doesn�t mean that initial state can be somehow transformed
by Ti; i = 1; 2; 3 to the �nal state).
Thus and so we will consider only states of chameleon�s population
which satisfy a+ b+ c � 0 (mod 3) :
Then a2i + b

2
i + c

2
i = (a� 1)

2
+ (b� 1)2 + (c� 1)2 =

a2 + b2 + c2 � 2 (a+ b+ c) + 3 � a2 + b2 + c2 (mod 3)
and this new invariant is sensitive because
a20 + b

2
0 + c

2
0 �

�
12 + 02 + 22

�
(mod 3) � 2 (mod 3) but

a2f + b
2
f + c

2
f � 0 (mod 3) :

Another simple invariant R (a; b; c) = frem3 (x) j x 2 fa; b; cgg (set of re-
mainders)
is better.
Indeed, since R (ai; bi; ci) = frem3 (x� 1) j x 2 fa; b; cgg = R (a; b; c) and
R (a0; b0; c0) = f0; 1; 2g 6= R (a0; b0; c0) = f0g :
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So, prospective �nal population of chameleons is impossible.
Analysis.
Invariants can help in the proof that some �nal state of the system
can�t be reached by admissible transformations from given initial
state if value of invariant for both are di¤erent.
But in case of their coincidence the question remains open.
In some such problem possible use linear model for representation
state of the system as, for example, in the recent problem, and then
we can get answer not only for richness of the �nal state, but also
how to get this state using admissible transformations.
Suppose that we apply ki transformation of kind Ti; i = 1; 2; 3
to initial state (a0; b0; c0) to obtain �nal state (af ; bf ; cf ) ;that is
(af ; bf ; cf ) = (a0; b0; c0)+k1 (�1;�1; 2)+k2 (�1; 2;�1)+k3 (2;�1;�1) ()8<: �k1 � k2 + 2k3 = af � a0

�k1 + 2k2 � k3 = bf � b0
2k1 � k2 � k3 = cf � c0

()

8<: �k1 � k2 + 2k3 = �2
�k1 + 2k2 � k3 = 0
2k1 � k2 � k3 = 2

:

Easy to see that latter system have no solutions in integers.
Indeed, 2k1 � k2 � k3 � (�k1 + 2k2 � k3) = 2 () 3 (k1 � k2) = 2
and that impossible.
Let p := af � a0; q := bf � b0; r := cf � c0:
For which, p; q; r the system has nonnegative integer solution.
First claim is obvious: p+ q + r = 0:

Then

8<: �k1 � k2 + 2k3 = p
�k1 + 2k2 � k3 = q
2k1 � k2 � k3 = r

()
�
�k1 � k2 + 2k3 = p
�k1 + 2k2 � k3 = q

()�
�k2 + 2k3 = p+ k1
2k2 � k3 = q + k1

()
�
3k2 = p+ 2q + 3k1
3k3 = 2p+ q + 3k1

:

So, claim number two: p � q (mod 3) :
If p � q (mod 3) and p+ q + r = 0 then for big enough non-negative integer

k1
we obtain nonnegative integer k2 and k3:
Apply represented above idea for solving the following training

Problem 9.3.
For solving this problem we will use represented above idea.
Suppose that we apply ki 2 N[f0g transformation of kind Ti; i = 1; 2; 3; 4
to initial state (13; 17) to obtain �nal state (37; 43) :
Then correspondent Linear Model of this problem is:
(37; 43) = (13; 17) + k1 (2;�1) + k2 (1; 2) + k3 (�2; 1) + k4 (�1;�2) ()�

2k1 + k2 � 2k3 � k4 = 37� 13
�k1 + 2k2 + k3 � 2k4 = 43� 17

()
�

2k1 + k2 � 2k3 � k4 = 24
�k1 + 2k2 + k3 � 2k4 = 26

.

Since 2k1 + k2 � 2k3 � k4 + 2 (�k1 + 2k2 + k3 � 2k4) = 24 + 2 � 26 ()
5 (k2 � k4) = 76 then system have no integer solutions and, therefore, �nal

state
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of balls in the box isn�t possible.

10. Miscellaneous problems.

Problem 10.1(1-Met. Rec.)
Let xi be amount of mushrooms from the forest brought by i� th pupil.
Since no two of them have not brought equally mushrooms we can
assume that x1 > x2 > ::: > x8:
According to the condition of the problem x1 + x2 + :::+ x8 = 60: Thus,

(1)
�
x1 + x2 + :::+ x8 = 60
1 � x1 < x2 < ::: < x8:

and we will prove that x8 + x7 + x6 � x1 + x2 + :::+ x5 ()
2 (x8 + x7 + x6) � x1 + x2 + :::+ x8 ()
2 (x8 + x7 + x6) � 60 () x8 + x7 + x6 � 30:
Further we will consider four variants of proving this inequality.
Let p := x8 + x7 + x6; q := x1 + x2 + :::+ x5 and t := x6:
Since p � t+ t+ 1 + t+ 2 = 3t+ 3 and
q � 1 + 2 + 3 + 4 + 5 = 15 then p = 60� q � 60� 15 = 45: Also note that
q � t� 1 + t� 2 + t� 3 + t� 4 + t� 5 = 5t� 15 ()
60� p � 5t� 15 () 75� 5t � p:
Hence,

�
3t+ 3 � p
75� 5t � p () max f3t+ 3; 75� 5tg � p

and we have to prove that p � 30:
Using these notations we will consider following three variants
of proving inequality p � 30:
Variant 1.
Since 3t+ 3 � p () t � p� 3

3
and 75� 5t � p () 75� p

5
� t

then
75� p
5

� t � p� 3
3

yields
75� p
5

� p� 3
3

()

15 + 1 � p

3
+
p

5
() 15 � 16 � 8p () 30 � p:

Remark.
Numbers 3; 8; 60 in the problem so well matched, that p which provide

solvability of inequality
75� p
5

� t � p� 3
3

in t 2 R automatically

provide solvability of this inequality in t 2 N:
Rigorously, for integer t must be

75� p
5

� t � p� 3
3

()�
75� p+ 4

5

�
� t �

�
p� 3
3

�
()

�
79� p
5

�
� t �

hp
3

i
� 1 and for t � 1

we obtain max
��
79� p
5

�
; 1

�
� t �

hp
3

i
� 1:

Criteria solvability of latter inequality in t 2 N is

8><>:
2 �

hp
3

i�
79� p
5

�
�
hp
3

i
� 1

()
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(2)

8<: 6 � p�
79� p
5

�
�
hp
3

i
� 1 :

Let
�
79� p
5

�
= n () 5n � 79 � p � 5n + 4 then n + 1 �

hp
3

i
()

3n+ 3 � p
and, therefore,

(2)()

8<: 6 � p
3n+ 3 � p

5n � 79� p � 5n+ 4
()

8<: 6 � p
3n+ 3 � p

75� 5n � p � 79� 5n
()8<: max f6; 3n+ 3; 75� 5ng � p � 79� 5n

6 � 79� 5n
3n+ 3 � 79� 5n

()

8<: max f6; 3n+ 3; 75� 5ng � p � 79� 5n
5n � 73
8n � 76

()�
max f6; 3n+ 3; 75� 5ng � p � 79� 5n

n � 9 ()
�
75� 5n � p � 79� 5n

n � 9
because
75� 5n � 6 and 75� 5n � 3n+ 3 for n � 9:
Hence, min p = min

n�9
(75� 5n) = 30:

Variant 2.
To solve problem su¢ ce to prove that max f3t+ 3; 75� 5tg � 30;
for any natural t:

Since max f3t+ 3; 75� 5tg � 30 ()
�
3t+ 3 � 30
75� 5t � 30 ()

�
t � 9
9 � t

then inequality max f3t+ 3; 75� 5tg � 30 holds for any natural t:
Variant 3.
Let ' (t) := max f3t+ 3; 75� 5tg ::Since 3t+ 3 � 75� 5t () t � 9 then

min
n2N

' (t) =

�
3t+ 3 if t � 9
75� 5t if t � 9 and, therefore,min

t2N
' (t) = min

�
min
t�9

' (t) ;min
t�9

' (t)

�
=

min

�
min
t�9

(75� 5t) ;min
t�9

(3t+ 3)

�
= min f30; 30g = 30:Hence, 30 � p:

Variant 4.
Let t1 := x1and ti := xi � xi�1; i = 2; 3; :::; 8: Then
x1 = t1; xi = t1 + t2 + :::+ ti; i = 2; :::; 8
where t1; t2; :::; t8 2 N and x1 + x2 + :::+ x8 = 60 ()
8t1 + 7t2 + 6t3 + 5t4 + 4t5 + 3t6 + 2t7 + t8 = 60 ()
4 (x1 + x2) + 3t2 + 6t3 + 5t4 + 4t5 + 3t6 + 2t7 + t8 = 60 ()

x1 + x2 =
60� (3t2 + 6t3 + 5t4 + 4t5 + 3t6 + 2t7 + t8)

4
=)

x1 + x2 �
60� (3 � 1 + 6 � 1 + 5 � 1 + 4 � 1 + 3 � 1 + 2 � 1 + 1)

4
= 9:

We have
x8 + x7 + x6 � (x1 + x2 + x3 + x4 + x5) = t8 + 2t7 + 3 (t6 + t5 + :::+ t1)�
(t5 + 2t4 + 3t3 + 4t2 + 5t1) = t8 + 2t7 + 3t6 + 2t5 + t4 � t2 � 2t1 =
(t8 + 2t7 + 3t6 + 2t5 + t4)� (x1 + x2) � (1 + 2 + 3 + 2 + 1)� 9 = 0
Variant 5. (Combinatorial solution).
Assume that there are no three pupils, whose collect amount of mushrooms
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not less than the other �ve pupils. That is for any 1 � i < j < k � 8 holds
inequality

xi + xj + xk < 30: Summing all these inequalities we obtain

(x1 + x2 + :::+ x8)

�
8

2

�
< 30

�
8

3

�
() 60 � 28 < 30 � 56 () 1 < 1 that is

contradiction.

Analysis of solutions.
Of course, the solution of the original problem is not exhausted by the above

variants. There are very "childish" solutions in which long and unconvinc-
ing verbal periods are designed to replace the missing algebraic technique with
branched logic.And the latter in such cases is not less (if not larger) stone of
a stumbling block.But the choice for the given variants of the solution fell also
because they represent some technique, the scope and utility of which is by no
means con�ned to this problem.

Here the following ideas and techniques are involved:

1. max
x2D

f (x) = max

�
max
x2D1

f (x) ; max
x2D2

f (x)

�
; where D = D1 [D2

(Similarly for min
x2D

f (x)).

2. Lover and upper bounds and attainable lover and upper bounds as
minimum and maximum, respectively.
3. Reduction of extremal problems to parametrical (�nding range of
parameter which provides solvability of systems of inequalities).

4. Solving inequalities with integer parts.
5. Reduction a problem with dependent variables to the problem with
independent variables.

Problem 10.2(2-Met. Rec.)
Let n is number of baskets and xi is number of apples in i-th basket,
i = 1; 2; :::; n numbered so that x1 � x2 � ::: � xn � 1:
Suppose that the required situation is attainable that is remains k
baskets and in k-th basket it is as many apples that if from i-th
basket to throw �i apples, i = 1; 2; :::; k then
x1 � �1 = x2 � �2 = ::: = xk � �k and
x1 � �1 + x2 � �2 + :::+ xk � �k = k (xk � �k) � 100 =) kxk � 100:
Suppose now that there is k such that kxk � 100:
Then for �i := xi � xk; i = 1; 2; :::; k � 1 and �k := 0 we obtain
xi � �i = xk; i = 1; 2; :::; k:
Therefore, x1 � �1 + x2 � �2 + :::+ xk � �k = kxk � 100:
Thus, existance of such k that kxk � 100 is su¢ cient and
necessity condition which provides claims of the problem
. We will prove that there is k for which kxk � 100:
Assume contrary that kxk < 100 for any k = 1; 2; :::; n:

Then in particular 1 � xn <
100

n
=) n < 100 () n � 99 and
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2000 = x1 + x2 + :::+ xn < 100

�
1 +

1

2
+
1

3
+ :::+

1

99

�
=)

20 < 1 +
1

2
+
1

3
+ :::+

1

99
:

But 1 +
1

2
+
1

3
+ :::+

1

99
< 1 +

1

2
+
1

3
+
1

4
+
1

5
+
1

6
+

�
1

7
+
1

7
+ :::+

1

7

�
<

49

20
+
1

7
� 98 < 17 and that is contradiction.

Analysis.

More precise estimation of the sum 1 +
1

2
+
1

3
+ :::+

1

99
< 6 give the

opportunity to solve the problem for common number of apples that not
less then 600:

Problem 10.3(3-Met. Rec.)
Note that 30 � 1 (mod 10) ; 31 � 3 (mod 10) ; 32 � 9 (mod 10) ; 33 � 7 (mod 10) ;
34 � 1 (mod 10) and so on...Let n = 4k + r;where r = 0; 1; 2; 3; 4:
Then for r = 0; 1; 2; 3; 4 the unite digit will be 1; 3; 9; 7 respectively.
To prove that digit of tens in 3n is even number su¢ ces to prove that
3n � r10 (3n) divisible by 20. ( rb (a) is remainder from division a by b).

We have 3n � r10 (3n) =

8>><>>:
34k � 1 (if r = 0)
34k+1 � 3 (if r = 1)
34k+2 � 9 (if r = 2)
34k+3 � 7 (if r = 3)

:

Note, that 34k � 1 =
�
34
�k � 1 ... 34 � 1 =) 34k � 1

... 20; 34k+1 � 3 =

3
�
34k � 1

� ... 20
and 34k+2 � 9 = 9

�
34k � 1

� ... 20:
Since 34k+3�7 � 34k+3�27 (mod 20) � 27

�
34k � 1

�
(mod 20) � 0 (mod 20) :

Problem 10.4(7-Met. Rec.)
Formulation of the problem eqivalent to the following:
Does it exist a natural number n such that

�
108 f

p
ng
�
= 19851986?

Since
�
108 f

p
ng
�
= 19851986 () 19851986 < 108 f

p
ng < 19851987 ()

19851986

108
< f

p
ng < 19851987

108
(19851986 6= 108 f

p
ng because

p
n

either integer or irrational).

In the notation � :=
19851986

108
; � :=

19851987

108
latter inequality becomes

� < f
p
ng < � and problem�s question can be formulated more general:

Let (�; �) � (0; 1) be any interval. Does it exist a natural number n such
that � < f

p
ng < � ?

It turns that unswer on this general question is positive and, in particular,
positive for the original problem.
Indeed, denoting p := [

p
n] we obtain
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� < f
p
ng < � () � <

p
n� p < � () (�+ p)

2
< n < (� + p)

2
:

And now the question arises:
When interval (a; b) contain an integer with guarantee?
The answer is quite simple:
If b� a > 1 then there is integer n that a < n < b:
Indeed, since a < [a] + 1 � a+ 1 < b then n = [a] + 1 2 (a; b) :
(Of course condition b� a > 1 is only su¢ cient because
for example 0:9 < 1 < 1:01).
Coming back to inequality (�+ p)2 < n < (� + p)2 we claim

(� + p)
2�(�+ p)2 > 1 () 2p (� � �) > 1�

�
�2 � �2

�
() p >

1�
�
�2 � �2

�
2 (� � �)

:
Let p be any natural number satisfying latter inequality then interval�
(�+ p)

2
; (� + p)

2
�
contain at least one natural n; that is there are p; n

natural such that �+ p <
p
n < � + p () � <

p
n� p < � and since

p < �+ p; � + p < p+ 1 then p <
p
n < p+ 1 () [

p
n] = p:

Thus, � < f
p
ng < �; Q.E.D.

Remark.
This problem can be solved by another way, but preference was given
to represented solution because it clarify deep roots of original problem
and allow solve the more general problem, introduce to wery useful
technics and facts, leads to important concept of "dense set".
We say that proper subset D � (0; 1) dence in (0; 1) ¤ for any
(�; �) � (0; 1) there is d 2 D such that d 2 (�; �) ;or by the other words
if D \ (�; �) 6= ? for any (�; �) � (0; 1) :
As a training exercise proposed the following
Problem.
Prove for any real numbers � < � there are n;m 2 N such that
� < 3

p
n�

p
m < �:

Problem 10.5(12-Met. Rec.)
Solution 1.
Let P (x) := ax2 + bx+ c:Note that

P (0) = c; P (2=3) =
4a

9
+
2b

3
+ c =

4a+ 6b+ 9c

9

and
1

3
P (0) + P (2=3) =

c

3
+
4a+ 6b+ 9c

9
=
2 (2a+ 3b+ 6c)

9
= 0:

So, P (2=3) = �1
3
P (0) :If P (0) then P (2=3) = 0 as well and 2=3 2 (0; 1) ;

If P (0) 6= 0 then P (0) � P (2=3) < 0 and, therefore, due continuity of P (x)
equation P (x) = 0 has solution in (0; 2=3) � (0; 1) :

Or, since P (1)+3P (1=3) = a+b+c+3
�
a

9
+
b

3
+ c

�
=
2 (2a+ 3b+ 6c)

3
= 0

then P (1=3) = 0 or we have solution between 1=3 and 1:
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(But of course this does not mean that on (0; 1) we have two roots because
(0; 2=3) \ (1=3; 1) 6= ? and root can be the same).

Solution 2.

Let F (x) :=
ax3

3
+
bx2

2
+ cx be primitive function for P (x) ;that is

F 0 (x) = P (x) : Since F (1) =
a

3
+
b

2
+ c =

2a+ 3b+ 6c

6
= 0 = F (0)

then by Roll�s Theorem there is a point x0 2 (0; 1) such that
F 0 (x0) = 0 () P (x0) = 0:

Remark. Easy to prove that 2a + 3b + 6c = 0 imply existence of root of
P (x) :

Indeed, since b = �2a
3
� 2c then

b2 � 4ac =
�
�2a
3
� 2c

�2
� 4ac = 4a2 � 12ac+ 9c2 + 27c2

9
=
(2a� 3c)2

9
+

3c2 > 0

because
(2a� 3c)2

9
+ 3c2 = 0 =) c = 0; a = 0 but a 6= 0:

Problem 10.6 (13-Met. Rec.)
a (4a+ 2b+ c) < 0 () 4a2 + 2ab+ ac < 0 () 16a2 + 8ab < �4ac ()
16a2 + 8ab+ b2 < b2 � 4ac () (4a+ b)

2
< b2 � 4ac =) b2 � 4ac > 0:

Problem 10.7(Met. Rec.)
For convenience, we write the function f (x) given in the problem
in the form f (x) = l1 (x) l2 (x) :::ln (x) ;

where li (x) :=
x� 2i+ 1
x� 2i = 1 +

1

x� 2i ; i = 1; 2; :::; n:
Note that domain of f (x) is D (f) = R� f2; 4; :::; 2ng ; where function
f (x) is di¤erentiable.

For any x 2D (f) we have f 0 (x) = f (x)
nP
i=1

l0i (x)

li (x)
:Since l0i (x) = �

1

x� 2i then

f 0 (x) = �f (x)
nP
i=1

1

(x� 2i) (x� 2i+ 1) :

Consider now two cases:
1. If x < 1 or x > 2n then f (x) > 0 and
(x� 2i) (x� 2i+ 1) > 0; i = 1; 2; :::; n :Hence, f 0 (x) < 0;
2. Let x 2 (2k � 1; 2k) ; k = 1; 2; ::; n:
Since 0 > (x� 2k) (x� 2k + 1) = (x� 2k + 1=2)2 � 1=4 � �1=4
then

1

(x� 2k) (x� 2k + 1) � �4 with equality for x = 2k � 1=2:

From the other hand since x 2 (2k � 1; 2k) then
x� 2i > 2k � 1� 2i = 2 (k � i)� 1 > 0 for i < k and, therefore,
(x� 2i) (x� 2i+ 1) > (2k � 1� 2i) (2k � 1� 2i+ 1) = 2 (k � i) (2 (k � i)� 1) ()
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1

(x� 2i) (x� 2i+ 1) <
1

2 (k � i) (2 (k � i)� 1) :
Similarly, for i > k we have

(x� 2i) (x� 2i+ 1) = (2i� x) (2i� x� 1) > (2i� 2k) (2i� 2k � 1) = 2 (i� k) (2 (i� k)� 1) > 0

and, therefore,
1

(x� 2i) (x� 2i+ 1) <
1

2 (i� k) (2 (i� k)� 1) :
Hence, if k > 1 then

k�1P
i=1

1

(x� 2i) (x� 2i+ 1) <
k�1P
i=1

1

2 (k � i) (2 (k � i)� 1) =
k�1P
j=1

1

2j (2j � 1) <
2k�1P
j=1

1

j (j + 1)
< 1

and for k = 1 by de�nition of Summation Operator we have
k�1P
i=1

1

(x� 2i) (x� 2i+ 1) = 0

So, anyway
k�1P
i=1

1

(x� 2i) (x� 2i+ 1) < 1 for any k = 1; 2; :::; n:

Similarly,
nP

i=k+1

1

(x� 2i) (x� 2i+ 1) <
nP

i=k+1

1

2 (i� k) (2 (i� k)� 1) =

1

2 � 3+
1

4 � 5+:::+
1

2 (n� k) (2 (n� k)� 1) <
1

1 � 2+
1

2 � 3+:::+
1

(2n� 1) 2n < 1 ifk < n:

If k = n then by de�nition
nP

i=k+1

1

(x� 2i) (x� 2i+ 1) = 0:

Thus,
nP
i=1

1

(x� 2i) (x� 2i+ 1) < 1 + (�4) + 1 = �2:

Since lk (x) < 0 and li (x) > 0; i 6= k for x 2 (2k � 1; 2k) then f (x) < 0 and,
therefore, f 0 (x) = � f (x)

nP
i=1

1

(x� 2i) (x� 2i+ 1) < 0:

Analysis.
Another way of solving this problem give opportunity to set and

solve the
following generalization of the problem (SSMJ #5376).
Let a1; a2; :::; an; b1; b2; :::; bn be positive real numbers such that

b1 < a1 < b2 < a2 < :::: < an�1 < bn < an:Let F (x) :=
(x� b1) (x� b2) ::: (x� bn)
(x� a1) (x� a2) ::: (x� an)

:

Prove that F 0 (x) < 0 for any x 2 Dom (F )
Solution.
Lemma.
F (x) can be represented in form

F (x) = 1 +
nP
k=1

ck
x� ak

;

where ck; k = 1; 2; :::; n are some positive real numbers.
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Proof.

Let Fk (x) :=
(x� b1) (x� b2) ::: (x� bk)
(x� a1) (x� a2) ::: (x� ak)

; k � n:
We will prove by Math. Induction that for any k � n there are positive

numbers

ck (i) ; i = 1; :::; k such that Fk (x) = 1 +
kP
i=1

ck (i)

x� ai
:

Let dk := ak � bk > 0; k = 1; 2; :::; n:
Note that F1 (x) =

x� b1
x� a1

=
x� a1 + a1 � b1

x� a1
= 1 +

d1
x� a1

:

Since
x� bk+1
x� ak+1

= 1+
dk+1

x� ak+1
then in supposition Fk (x) = 1+

kP
i=1

ck (i)

x� ai
,

where ck (i) > 0; i = 1; :::; k < n we obtain

Fk+1 (x) = Fk (x) �
x� bk+1
x� ak+1

=

�
1 +

kP
i=1

ck (i)

x� ai

��
1 +

dk+1
x� ak+1

�
=

1+
dk+1

x� ak+1
+

kP
i=1

ck (i)

x� ai
+

kP
i=1

dk+1ck (i)

(x� ai) (x� ak+1)
= 1+

dk+1
x� ak+1

+
kP
i=1

ck (i)

x� ai
�

kP
i=1

dk+1ck (i)

ak+1 � ai

�
1

x� ai
� 1

x� ak+1

�
= 1 +

dk+1
x� ak+1

�
1 +

kP
i=1

ck (i)

ak+1 � ai

�
+

kP
i=1

ck (i)

x� ai

�
1� dk+1

ak+1 � ai

�
= 1 +

dk+1Fk (ak+1)

x� ak+1
+

kP
i=1

ck (i)

x� ai
� bk+1 � ai
ak+1 � ai

:

Since Fk (ak+1) > 0 and bk+1 � ai = (bk+1 � ak) + (ak � ai) > 0 then

ck+1 (k + 1) = dk+1Fk (ak+1) > 0; ck+1 (i) :=
(bk+1 � ai) ck (i)

ak+1 � ai
> 0; i = 1; 2; :::; k

and Fk+1 (x) = 1 +
k+1P
i=1

ck+1 (i)

x� ai
:

Since F (x) = 1 +
nP
k=1

ck
x� ak

and ck > 0; k = 1; 2; :::; n then

F 0 (x) = �
nP
k=1

ck

(x� ak)2
< 0 for any x 2 Dom (F ) = R� fa1; a2; :::; ang :

Problem 10.8(20-Met. Rec.)
We will say that therms of the sequence ai1 ; ai2 ; :::; aik arranged in
numerical order of i1 < i2 < ::: < ik form the upper ladder (form the
lower ladder) for am if holds two conditions:
1. ik = m;
2. ai1 � ai2 � ::: � aik(ai1 � ai2 � ::: � aik).
Wherein, k called "the height of the ladder".
Obvious that for any term of the sequence set of correspondent
upper ladders (lower ladders) isn�t empty. And besides, for any term of
the sequence the height of its ladder bound by the number n2 + 1:
Thus, for any term am of the sequence de�ned pair of nonnegative
integer numbers (pm; qm) which, respectively, are the highest lower
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ladder and the highest upper ladder for am:
Note that if m1 6= m2 then (pm1 ; qm1) 6= (pm2 ; qm2) :
Indeed, WLOG assume that m1 < m2: If am1

� am2
then pm2

� pm1
+ 1;

If am1
� am2

then qm2
� qm1

+ 1:So, we have exactly n2 + 1 di¤erent pairs.
So, our problem can be formulated as follows:
Prove, that among n2 + 1 numbers a1; a2; :::; an2 ; an2+1 there is at least
one such that its ladder (no mettter upper or lower) has heigth not
less then n+ 1:
Assume contrary, that is for any m 2

�
1; 2; :::; n2 + 1

	
the heigth of any

ladder for am does not exceed n:Then pm; qm 2 f1; 2; :::; ng and, therefore,
total amount of pairs (pm; qm) does not exceed n2:That is the contradiction.

Problem 10.9(22-Met. Rec.)

First note that for m = 1 inequality
p
7� m

n
>

1

mn
becomes

p
7� 1

n
>
1

n
()

p
7 >

2

n
and obviously holds for any natural n.
We will prove that for any natural n;m such that

m

n
<
p
7

and m � 2 holds 7n2 �m2 � 3:
Since 7n2 �m2 = 3 for n = 1 and m = 2 and

2

3
<
p
7 then

su¢ ce to prove that equations 7n2 �m2 = 1; 7n2 �m2 = 2

have no solutions in natural n;m such that
m

n
<
p
7:

Indeed,
7n2�m2 = 1 =) m2 � �1 (mod 7) ; 7n2�m2 = 2 =) m2 � 5 (mod 7) :
But for any integer m holds m2 � 0; 1; 4; 2 (mod 7) :
Now we ready to complete the solution.

Su¢ ce to note that
p
7� m

n
>

1

mn
() n

p
7�m >

1

m
()

n
p
7 > m+

1

m
() 7n2 > m2 + 2 +

1

m2
()

7n2 �m2 > 2 +
1

m2
and 7n2 �m2 � 3 > 2 + 1

m2
:

By the way was proved that

max
n
m2 � 7n2 j m;n 2 N and m

n
<
p
7
o
= �3:

Problem 10.10(39-Met. Rec.)
This problem has the following Interpretation:

Prove that min
�
q j q 2 N and 9 (p 2 N)

�
6

13
<
p

q
<
7

15

��
= 28:

Note that for any fraction
a

b
;
c

d
such that

a

b
<
c

d
holds inequality

a

b
<
a+ c

b+ d
<
c

d
:

Also note that if bc� ad = 1 then a
b
;
c

d
both irreducible and since
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(b+ d) c� (a+ c) d = bc� ad = 1 then a+ c
b+ d

is irreducible as well!

In our problem 7 � 13� 15 � 6 = 1:
We generalize original problem in form of the following
Theorem.
Let

a

b
and

c

d
be two positive fraction such that

a

b
<
c

d
and bc� ad = 1:

Then min
�
q j q 2 N and 9 (p 2 N)

�
a

b
<
p

q
<
c

d

��
= b+ d:

Proof.
First note that c (b+ d)� d (a+ c) = b (a+ c)� a (b+ d) = bc� ad = 1:
Assume that there is a fraction

p

q
such that

a

b
<
p

q
<
c

d
and with q < b+ d:

Since
a

b
<
p

q
=) pb� aq > 0 () pb� aq � 1 and

p

q
<
c

d
=) qc� pd > 0 () qc� pd � 1

then d (pb� aq)+b (qc� pd) � b+d () q (bc� ad) � b+d () q � b+d:
Thus, we obtain the contradiction q � b+ d < b+ d which complete the
proof.�
Also we can see that for any fraction

p

q
such that

a

b
<
p

q
<
c

d
and bc�ad = 1

holds q � b+ d and p � a+ c (c (pb� aq) + a (qc� pd) � a+ c ()
p (bc� ad) � a+ c () p � a+ c).
Let

p

b+ d
be fraction with minimal denumerator b+ d such that

a

b
<

p

b+ d
<
c

d
:

Assume that p > a+ c: Since 0 < c (b+ d)� pd () 1 � c (b+ d)� pd then
1 � c (b+ d)� pd < c (b+ d)� (a+ c) d = bc� ad = 1 that is contradiction.
Therefore, p = a+c and fraction with minimal denumerator de�ned uniquely

and equal to
a+ c

b+ d
:

Remark.
In the case 0 <

a

b
;
c

d
such that

a

b
<
c

d
and bc� ad 6= 1 the way of

�nding of "internal" fraction with minimal denumerator isn�t works.

FProblem 10.11.
So, problem is:
Find all solution of equation

(1) x1x2x3:::xn =
nP
i=1

xi+
nP

1�i<j�n
xixj+

nP
1�i<j<k�n

xixjx3+:::+x1x2:::xn ()

10n�1x1 + 10
n�2x2 + :::+ 10xn�1 + xn + 1 = (1 + x1) (1 + x2) ::: (1 + xn) ;

where x1 2 f1; 2; :::; 9g and x2; x3; :::; xn 2 f0; 1; 2; :::; 9g :

Lemma.
For any x1 2 f1; 2; :::; 9g and x2; x3; :::; xn 2 f0; 1; 2; :::; 9g ; n � 2
holds inequaliity

(1 + x1) (1 + x2) ::: (1 + xn) � 10n�1x1+10n�2x2+ :::+10xn�1+xn+1
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and equality occurs i¤ x2 = x3 = ::: = xn = 9 and x1 2 f1; 2; :::; 9g be any.
Proof.(using Math Induction).
1. Base of Math Induction
Let n = 2 then we have (1 + x1) (1 + x2) � 10x1 + x2 + 1 ()
1 + x1 + x2 + x1x2 � 10x1 + x2 + 1 () x1x2 � 9x1 () x1 (9� x2) � 0:
2. Step of Math Induction.
Let x1 2 f1; 2; :::; 9g and x2; x3; :::; xn; xn+1 2 f0; 1; 2; :::; 9g :
If xn+1 = 9 then
(1 + x1) (1 + x2) ::: (1 + xn) (1 + xn+1) �
10nx1 + 10

n�1x2 + 10
n�2x2 + :::+ 10xn + xn+1 + 1 ()

(1 + x1) (1 + x2) ::: (1 + xn) � 10n�1x1 + 10n�2x2 + :::+ 10xn�1 + xn + 1;
where latter inequality holds by supposition of Math Induction
and equality occurs i¤ x2 = x3 = ::: = xn = 9;
x1 2 f1; 2; :::; 9g be any and xn+1 = 9:
Let now xn+1 2 f0; 1; 2; :::; 8g :Then
10nx1 + 10

n�1x2 + 10
n�2x2 + :::+ 10xn + xn+1 + 1

1 + xn+1
>

1 +
10nx1 + 10

n�1x2 + 10
n�2x2 + :::+ 10xn

10
=

10n�1x1 + 10
n�2x2 + :::+ 10xn�1 + xn + 1:

By supposition of Math Induction we have
10n�1x1 + 10

n�2x2 + :::+ 10xn�1 + xn + 1 � (1 + x1) (1 + x2) ::: (1 + xn) :
Hence, 10nx1 + 10n�1x2 + 10n�2x2 + :::+ 10xn + xn+1 + 1 �
(1 + x1) (1 + x2) ::: (1 + xn) (1 + xn+1)�:
Using Lemma we immediatelly obtain that all solutions of equation (1)
are numbers x199:::9 and x1 2 f1; 2; :::; 9g :

Problem 10.12(51-Met. Rec.).

Let n be an integer root of P (x) then
P (n)� P (0)

n� 0 = �P (0)
n

2 Z =) n

is odd as divisor of odd number:

From another hand
P (n)� P (1)

n� 1 = � P (1)
n� 1 2 Z =) n� 1 is odd as

divisor of odd number:
But since n odd then n� 1 is even. So x os odd and even
simulteneously-that is contradiction.

Problem 13(52-Met. Rec.).

Let a; b; c be di¤erent integer numbers such that
P (a) = P (b) = P (c) = 1 and assume that n is
integer root of P (x) : Then for x 2 fa; b; cg we have
P (n)� P (x)

n� x =
�1
n� x 2 Z =) n� x 2 f1;�1g :

Since three numbers n� a; n� b; n� c belong to 2-elements
set then at least two of them is equal.
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But that yields that equal two of a; b; c and it is contradiction.

Problem 10.14(53-Met. Rec.).
We will prove using Math Induction that P (n+ km) divisible
by m for any natural k:
For k = 1 we have
P (n+m)� P (n)
(n+m)� n =

P (n+m)�m
m

2 Z () P (n+m)

m
2 Z:

For any natural k assuming that
P (n+ km)

m
2 Z we obtain

P (n+ (k + 1)m)� P (n+ km)
(n+ (k + 1)m)� (n+ km) =

P (n+ (k + 1)m)� P (n+ km)
m

2 Z =)

P (n+ (k + 1)m)

m
:

Problem 10.15(54-Met. Rec.).

Let x0 := x and xk := f (xk�1) ; k 2 N then g (x) = f (f (:::f (x) :::))| {z }
n�times

= xn:

a) x1 =
xp
1� x2

; x2 =
x1p
1� x21

= x2 =

xp
1� x2r

1� x2

1� x2

=
xp

1� 2x2
:

Assume that xk =
xp

1� kx2
then xk+1 =

xkp
1� x2k

=

xp
1� kx2r

1� x2

1� kx2

=

xp
1� (k + 1)x2

:

So, byMath Induction we proved that xk =
xp

1� kx2
for any k 2 N and,

therefore, g (x) = xn =
xp

1� nx2

b) Note that f (cot t) =
cot t

p
3� 1

cot t+
p
3
=
cot t cot

�

6
� 1

cot t+ cot
�

6

= cot
�
t+

�

6

�
for any t 2 R:
Let '0 := cot

�1 (x) and 'k = 'k�1 +
�

6
; k 2 N then 'k = '0 +

k�

6
; k 2 N:

We will prove by Math Induction that xk = cot'k; k 2 N [ f0g :
Base of Math Induction.
We have by de�nition x0 = x = cot'0:
Step of Math Induction.
For any k 2 N [ f0g supposition xk = cot'k yeilds
xk+1 = f (xk) = f (cot'k) = cot'k+1:
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Thus, g (x) = xn = cot'n = cot
�
'0 +

n�

6

�
=
cot'0 cot

n�

6
� 1

cot'0 + cot
n�

6

=
x cot

n�

6
� 1

x+ cot
n�

6
Problem 10.16(62-Met. Rec.).

Note that since F (x) =
4x

4x + 2
=

2x

2x + 21�x
then

F (1� x) = 21�x

2x + 21�x
and F (x) + F (1� x) = 1:

Let Sn :=
nP
k=0

F

�
k

n

�
: Then Sn =

nP
k=0

F

�
n� k
n

�
and, therefore,

2Sn :=
nP
k=0

F

�
k

n

�
+

nP
k=0

F

�
n� k
n

�
=

nP
k=0

�
F

�
k

n

�
+ F

�
1� k

n

��
= n+ 1:Hence, Sn =

n+ 1

2
and

nP
k=1

F

�
k

n

�
= Sn � F (0) =

n+ 1

2
� 1
3
=
3n+ 1

6
:

Problem 10.17(63-Met. Rec.).

Let q1 < q2 and xi := f (qi) ; i = 1; 2: Then, since x3i + pxi� qi = 0; i = 1; 2
we obtain x32 + px2 � q2 �

�
x31 + px1 � q1

�
= 0 ()

x32 � x31 + p (x2 � x1) = q2 � q1 ()
(x2 � x1)

�
x22 + x2x1 + x

2
1 + p

�
= q2�q1 () x2�x1 =

q2 � q1
x22 + x2x1 + x

2
1 + p

:

Hence, x2 � x1 > 0 because q2 � q1 > 0 and x22 + x2x1 + x21 + p � p > 0
for any x1; x2 and, therefore, f (q2) > f (q1) :

Problem 10.18(64-Met. Rec.).

Assume that there is a 2 R such that P (P (a)) = a then
P (P (a))� a = 0 () P (P (a))� P (a) + P (a)� a = 0 ()
P (P (a))� P (a) = � (P (a)� a) :
Let b := P (a) and f (x) := P (x)� x:Since P (a) 6= a () b 6= a and
P (P (a))� P (a) = � (P (a)� a) () P (b)� b = � (P (a)� a) ()
f (b) = �f (a) then f (a) f (b) < 0 and f (x) as continuous function has
a root located between a and b;that is f (c) = 0 () P (c) = c:
Obtained contradiction mean that equation P (P (x)) = x have no
roots as well.

Problem 10.19(67-Met. Rec.).

According to the statement of the problem we have two sequences of numbers
a1; a2; :::; an (boys) and b1; b2; :::; bn (girls)
for which one of the two conditions holds:
a) ai < bi; i = 1; 2; :::; n or b) jai � bij < h; i = 1; 2; :::; n:
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(in the problem h = 10)
1. Since conditions a) and b) connect in pairs only terms of both sequences,

that standing on the places with the same numbers, then the ful�llment of these
conditions does not depend on the order of order listing of these pairs.
Therefore, without loss of generality, we may assume that the members of

one of the two sequences, let it be b1; b2; :::; bn is originally ordered as b1 � b2 �
::: � bn and then should be ordered only the sequence a1; a2; :::; an:
Since the ordering of any sequence of numbers is reduced to the imple-

mentation of ordering transpositions, that is two terms of the sequence ai and
aj ; i < j exchanged their positions if ai > aj , it is su¢ ces to prove the invariance
of ful�lling of the properties a) and b) when the corresponding transposition
is made. That is, to prove the validity of the proposed claims in the case of
n = 2 for pairs (a1; a2) and (b1; b2) in the supposition that b1 � b2:
Suppose that a1 > a2: In the case of a) we have a1 � b1; a2 � b2 and

b1 � b2:
After transposition we obtain pair (a2; a1) : Then a2 < a1 � b1 � b2 yields
a2 < b1 and a1 � b2;
In the case of b ) we have ja1 � b1j � h; ja2 � b2j � h and a1 > a2:
We will prove ja2 � b1j � h; ja1 � b2j � h:
Indeed, since ja1 � b1j � h () b1 � h � a1 � b1 + h and
ja2 � b2j � h () b2 � h � a2 � b2 + h

then
�
a1 � b1 + h
b1 � b2

=) a1 � b2 + h and�
b2 � h � a2
a2 < a1

=) b2 � h < a1:

Hence, ja1 � b2j � h:

Similarly,
�
a1 � b1 + h
a2 < a1

=) a2 < b1 + h and�
b2 � h � a2
b1 � b2

=) b1 � h < a1:

Hence, ja2 � b1j � h:

Problem 10.20 (86-Met. Rec).
Solution1.
Denoting u := x� b; v := y � b we set free parameter b and obtain system
of inequalities that equivalent to original system, namely the system

(1)
�
u+ b � v2
v + b � u2 ()

�
u � v2 � b
v � u2 � b :

Let (u; v) be only sollution of the system (1).
Then u+ v � v2 � b+ u2 � b ()

2b+
1

2
�
�
u� 1

2

�2
+

�
v � 1

2

�2
� 0 =) b � �1

4
:

If b > �1
4
then system (1) have at least two solutions.

Indeed, in that case equation b = z2 � z () z2 � z � b = 0 have
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two roots z1 =
1�

p
1 + 4b

2
and z2 =

1 +
p
1 + 4b

2
and, therefore, (u; v) = (z1; z1) ; (z2; z2) are two di¤erent solution
of the system (1).

Thus, can�t be b > �1
4
and remains b = �1

4
as necessary condition

for b to provide only solution of the system (1).

And, vise versa, if b = �1
4
then�

u� 1=4 � v2
v � 1=4 � u2 =)

�
u� 1

2

�2
+

�
v � 1

2

�2
= 0 () (u; v) =

�
1

2
;
1

2

�
and it is only solution of the system.

Solution2. (Direct solution of original problem).
Let b be such that original system has only solution (x; y) :
Note that x = y because if x 6= y then due symmetry of the system
pair (y; x) which not equal to (x; y) is solution as well and that
contradicts to uniqueness of solution (x; y) :
But if x = y then system of two inequalities becomes one inequality
x � (x� b)2 () x2 � (2b+ 1)x+ b2 � 0

and this inequality has unique solution. That possible only i¤
discriminant of equation x2 � (2b+ 1)x+ b2 = 0 equal to zero, that is i¤
(2b+ 1)

2 � 4b2 = 0 () b = �1
4
:

Now, let b = �1
4
then

8>><>>:
x �

�
y +

1

4

�2
y �

�
x+

1

4

�2 =)

x+ y �
�
y +

1

4

�2
+

�
x+

1

4

�2
()�

y � 1
4

�2
+

�
x� 1

4

�2
� 0 () (x; y) = (1=4; 1=4) :

Remark.

Note that
�
u+ b � v2
v + b � u2 ()

�
b � v2 � u
b � u2 � v ()

b � max
�
u2 � v; v2 � u

	
and b = �1=4

which provide uniqueness of solution at the same time is
min
u;v2R

�
max

�
u2 � v; v2 � u

	�
:

Indeed, max
�
u2 � v; v2 � u

	
� u2 � v + v2 � u

2
=

�
u2 � u

�
+
�
v2 � v

�
2

=

(u� 1=2)2 + (v � 1=2)� 1=2
2

� �1=4 and since lower bound for
max

�
u2 � v; v2 � u

	
is attanable if (u; v) = (1=2; 1=2) then

min
u;v2R

�
max

�
u2 � v; v2 � u

	�
= �1=4:
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FProblem 10.21( CRUX 3090)
Suppose x = min fx; y; zg ; then
3� 4y � 3� 4x =) 2x (3� 4x) � 2x (3� 4y) � z2 + 1 � x2 + 1:
So, 2x (3� 4x) � x2 + 1 () 9x2 � 6x+ 1 � 0 () x =

1

3
;

and because x = min fx; y; zg that implies y � 1

3
and z � 1

3
:

From other side

x =
1

3
=) z2+1 � 2

3
(3� 4y) � 2

3

�
3� 4

3

�
=
10

9
=) z2 � 1

9
=) z � 1

3
:

So, z =
1

3
: The same way gives us y =

1

3
:�

FProblem 10.22(87-Met. Rec).
Let xi be number of 2�rings chains created from rings taken by one from
rods staing in the points Ai and Ai+1; i = 1; 2; 3; 4 (A5 = A1).
Then we should maximaze sum x1 + x2 + x3 + x4
by all quads (x1; x2; x3; x4) of nonnegative integer numbers such that
x1 + x4 � a1; x1 + x2 � a2; x2 + x3 � a3; x3 + x4 � a4:

Set of all such quads (x1; x2; x3; x4) we denote D:
So, we have to determine max

(x1;x2;x3;x4)2D
(x1 + x2 + x3 + x4) :

Let t := x4 then 0 � t � min fa1; a4g and
Dt := f(x1; x2; x3) j xi � 0; i = 1; 2; 3; x1 � a1 � t; x1 + x2 � a2; x2 + x3 � a3; x3 � a4 � tg :

Thus, max
(x1;x2;x3;x4)2D

(x1 + x2 + x3 + x4) = max
0�t�minfa1;a4g

�
t+ max

(x1;x2;x3)2Dt

(x1 + x2 + x3)

�
:

Lemma.
Let x1 � b1; x1 + x2 � b2; x2 + x3 � b3; x3 � b4; xi � 0; i = 1; 2; 3 where
bi; i = 1; 2; 3 are given nonnegative integer numbers.
Then maximal possible value of x1 + x2 + x3 equal

min fb1 + b3; b2 + b3; b2 + b4g :
Proof.

We have

8>>>><>>>>:
x1 � b1

x1 + x2 � b2
x2 + x3 � b3
x3 � b4

0 � x1; x2; x3

()

8>>>>>><>>>>>>:

0 � x1 � b1
0 � x2 � b2 � x1
0 � x3 � b3 � x2

x3 � b4
x1 � b2
x2 � b3

()

8<: 0 � x1 � min fb1; b2g
0 � x2 � min fb2 � x1; b3g
0 � x3 � min fb3 � x2; b4g

:

Then x1 + x2 + x3 � x1 + x2 +min fb3 � x2; b4g = x1 +min fb3; x2 + b4g �
x1+min fb3;min fb2 � x1; b3g+ b4g = x1+min fb3; b2 � x1 + b4; b3 + b4g =
x1+min fb3; b2 + b4 � x1g = min fb3 + x1; b2 + b4g � min fb3 +min fb1; b2g ; b2 + b4g =
min fb1 + b3; b2 + b3; b2 + b4g : Let x�1 := min fb1; b2g ; x�2 := min fb2 � x�1; b3g ;
x�3 := min fb3 � x�2; b4g :
Then x1 + x2 + x3 � x�1 + x�2 + x�3 = min fb1 + b3; b2 + b3; b2 + b4g and,
therefore, max (x1 + x2 + x3) = min fb1 + b3; b2 + b3; b2 + b4g :
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By replacing (b1; b2; b3; b4) in Lemma with (a1 � t; a2; a3; a4 � t) we obtain
that

max
(x1;x2;x3)2Dt

(x1 + x2 + x3) = min fa1 � t+ a3; a2 + a3; a2 + a4 � tg
and, therefore,

max
(x1;x2;x3;x4)2D

(x1 + x2 + x3 + x4) = max
0�t�minfa1;a4g

(t+min fa1 � t+ a3; a2 + a3; a2 + a4 � tg) =

max
0�t�minfa1;a4g

(min fa1 + a3; a2 + a3 + t; a2 + a4g) = min fa1 + a3; a2 + a3 +min fa1; a4g ; a2 + a4g =

min fa1 + a3; a2 + a3 + a1; a2 + a3 + a4; a2 + a4g = min fa1 + a3; a2 + a4g :

Problem 10.23(Problem with light bulbs).
States of bulbs is encoded by two numbers �1 if bulb is turned on and 1
if it turned o¤.
For any integer number m let D (m) be set of all natural divisors of m:
Let am (k) ; m = 1; 2; :::; n be state of the m� th bulb when the person
click k � th switch.
Note that am (1) = 1 for all m 2 f1; 2; :::ng and

am (k) =

�
am (k � 1) if k =2 D (m)
�am (k � 1) if k 2 D (m)

; k 2 f2; 3; :::; ng ;m 2 f1; 2; :::ng

Since am (n) = (�1)jD(m)j ;m 2 f1; 2; :::ng then am (n) is turned on
i¤ jD (m)j is odd number.
If at least one of exponent in expansion m = p�11 :::p

�l
l is odd

then jD (m)j is even.
Thus, jD (m)j is odd i¤ all expoents are even, that is i¤m is a perfect square
and, therefore, we have so many turned on bulbs as haw many perfect
squares between 1 and n:
Since 1 � k2 � n () 1 � k � [

p
n] answer is:

[
p
n] bulbs �nally will be turned on.

Problem 10.24(O274, MR4 2013 ).

We have
�

bx+ ay � abc
x; y � 0: ()

8<: 0 � y �
�
b (ac� x)

a

�
0 � x � ac:

()8>><>>:
0 � t � ac
x = ac� t

0 � y �
�
bt

a

�
:
:

Hence, D :=

�
(ac� t; y) j 0 � t � ac and 0 � y �

�
bt

a

��
and

jDj =
acP
t=0

��
bt

a

�
+ 1

�
= ac+ 1 +

acP
t=0

�
bt

a

�
:Since f0; 1; 2; :::; acg =

facg [ fka+ r j k = 0; 1; :::; c� 1 and r = 0; 1; 2; :::; a� 1g then
acP
t=0

�
bt

a

�
= bc+

c�1P
k=0

a�1P
r=0

�
b (ka+ r)

a

�
= bc+

c�1P
k=0

a�1P
r=0

�
bk +

�
br

a

��
=

c
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bc+
c�1P
k=0

a�1P
r=0

bk +
c�1P
k=0

a�1P
r=0

�
br

a

�
= bc+ ab

c�1P
k=0

k +
a�1P
r=0

c�1P
k=0

�
br

a

�
=

bc+
ab (c� 1) c

2
+ c

a�1P
r=1

�
br

a

�
:

Since
a�1P
r=1

�
br

a

�
=

a�1P
r=1

�
br

a
�
�
br

a

��
=

a�1P
r=1

br

a
�
a�1P
r=1

�
br

a

�
=

b

a

a�1P
r=1

r �
a�1P
r=1

�
br

a

�
=
ba (a� 1)

2a
�
a�1P
r=1

�
br

a

�
=
b (a� 1)

2
�
a�1P
r=1

�
br

a

�
then remaince evaluate sum

a�1P
r=1

�
br

a

�
:

Since a ? b then
�
a

�
br

a

�
j r = 1; 2; :::; a� 1

�
= f1; 2; :::; a� 1g then

a�1P
r=1

�
br

a

�
=

a�1P
r=1

r

a
=
a� 1
2

and, therefore,

a�1P
r=1

�
br

a

�
=
b (a� 1)

2
� a� 1

2
=
(a� 1) (b� 1)

2
:

Thus, jDj = ac+ 1 + bc+ ab (c� 1) c
2

+
c (a� 1) (b� 1)

2
=

c (2a+ 2b+ abc� ab+ ab� a� b+ 1)
2

+ 1 =
c (abc+ a+ b+ 1)

2
+ 1:

:
Problem 10.25(102-Met. Rec.)
a) Suppose that sinx+ sin�x is periodic with the period � :
Then sin (x+ �) + sin� (x+ �) = sinx+ sin�x ()
sin (x+ �)� sinx = � (sin� (x+ �)� sin�x) :
Let h (x) := sin (x+ �)� sinx = � (sin� (x+ �)� sin�x) :
Then h (x) is periodic with period � :But at the same time h (x) have

periods 2� and
2�

�
:

Note that � =2 2�Z� f0g because otherwise if � 2 2�Z� f0g then
sin� (x+ �)� sin�x = 0 for any x and in paricular if x = 0:
Then sin�� = 0 () �� = k� =) � =

k�

�
2 Q �contradiction.

Since continuos function h (x) isn�t constant then it has smallest

positive period ��:Then 2� = k�� and
2�

�
= l�� for some integer

k; l and, therefore, � =
k

l
2 Q:

Contradiction!
Another solution.
Let h (x) := sinx + sin�x; then h0 (x) = cosx + � cos�x and h00 (x) =

� sinx� �2 sin�x
Assume that h (x) is periodic with period � .
Then h0 (x) and h00 (x) are periodic with period � :

Since h (x) + h00 (x) =
�
1� �2

�
sin�x and sin�x has main period

2�

�
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then � =
2�

�
m because h0 (x) + h00 (x) has period � :

Similarly, since �2h (x) + h00 (x) =
�
�2 � 1

�
sinx we obtain

� = 2n�:Hence,
2�

�
m = 2n� () � =

m

n
2 Q;that is contradiction.

b) Solution similar to a)
c) Let h (x) := tanx+ tan�x where � =2 Q:
Then h0 (x) = 1 + tan2 x+ �

�
1 + tan2 �x

�
= 1 + �+ tan2 x+ � tan2 �x;

tan � + tan�� = 0; tan2 � + � tan2 �� = 0;
tan �

�
1 + tan2 �

�
+ 2�2 tan��

�
1 + tan2 ��

�
= 0:

Since tan�� = � tan � then tan2 � + � tan2 �� = tan2 � (1 + �) = 0 ()
� = n�; n 2 Z and tan�� = 0 () �� = m�;m 2 Z:
Hence, � =

m

n
2 Q and that is contradiction.

More simple.
Since cotx+ cot�x isn�t periodic ( because D (cotx+ cot�x) =

D (cotx) \D (cot�x) = R��Z \ R��
�
Z is nonperiodic) then

tanx+ tan�x = cot (�=2x� x) + cot (�=2x� �x)
is nonperiodic as well.
d) Let h (x) := sinx+ tan�x where � =2 Q: Suppose that h (x) periodic
with period � > 0:
Since h (x) is di¤erentiable then
h0 (x) = cosx+ �

�
1 + tan2 �x

�
; h00 (x) = � sinx+ 2�2 tan�x

�
1 + tan2 �x

�
are periodic with period � as well. Since h (�) = h (0) ; h0 (�) = h0 (0) ;
h00 (�) = h00 (0) then � satisfy to the system.
Hence8<:

sin � + tan�� = 0
cos � + �

�
1 + tan2 ��

�
= 1 + �

� sin � + 2�2 tan��
�
1 + tan2 ��

�
= 0

()

8<: sin � + tan�� = 0
cos � + � tan2 �� = 1

� sin � + 2�2 tan��
�
1 + tan2 ��

�
= 0

:

Then sin �+tan��+(� sin �)+2�2 tan��
�
1 + tan2 ��

�
= 0 () tan��

�
1 + 2�2

�
1 + tan2 ��

��
=

0 ()
tan�� = 0 () �� = n�; n 2 Z and, therefore, sin � = 0 () � =

m�;m 2 Z
Hence, n� = m�� () � =

n

m
2 Q and that is contradiction.

Problem 10.26(103-Met.Rec)

Denote Sn =
1

a1 + 1
+

1

a2 + 1
+ :::+

1

an + 1
:

Since xk+1 = xk + x2k then from
1

xk+1
=

1

xk (1 + xk)
=
1

xk
� 1

xk + 1
=

1

xk
� xk
xk (xk + 1)

=
1

xk
� xk
xk+1

follows that
xk
xk+1

=
1

xk
� 1

xk+1
:

Thus, we obtain Sn =
1

x1
� 1

xn+1
:

Or more shortly:
Dividing an+1 = an + a2n by anan+1 we obtain
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1

an
� 1

an+1
=

an
an+1

=
1

an + 1
and from that immediately follows

Sn =
nP
k=1

�
1

ak
� 1

ak+1

�
=
1

a1
� 1

an+1
= 2� 1

an+1
:

So, Sn < 2 for any n 2 N From the other hand, since an increasing
in N ( this follows from an+1 � an = a2n > 0; n 2 N ) then
an � a3 =

3

4
+
9

16
=
21

16
> 1 for all n � 3:

Hence, Sn = 2�
1

an+1
� 2� 1

a3
> 1 for any n � 2:

Thus for all n � 3 holds 1 < Sn < 2 () [Sn] = 1:

(Or, alternatively, since a2 =
3

4
then S2 =

1

1 +
1

2

+
1

1 +
3

4

=
2

3
+
4

7
=
26

21
> 1

and 1 < S2 � Sn < 2 for any n � 2 ).

Problem 10.27 (Austria �Poland, 1980).
Since jan+m � an � amj � 1 () an+ am� 1 � an+m � an+ am+1 then
in particularly
2an�1 � a2n � 2an+1; 3an�2 � 2an+an�1 � a2n � a2n+an+1 � 3an+2
and further, using math induction we obtain

man � (m� 1) � amn � man + (m� 1) :
Hence

an
n
� m� 1

mn
� amn
mn

� an
n
+
m� 1
mn

()
���amn
mn

� an
n

��� � m� 1
mn

and since
m� 1
mn

<
1

n
then

���amn
mn

� an
n

��� < 1

n
:

Switching places for n and m we get also
���amn
mn

� am
m

��� < 1

m
:

Hereof,
���an
n
� am
m

��� = ���an
n
� amn
mn

+
amn
mn

� am
m

��� � ���amn
mn

� an
n

���+���amn
mn

� am
m

��� < 1

n
+
1

m
:

Problem 10.28(M.1195 ZK Proposed by ,Proposed by O.T.Izhboldin)

From
(1) an + am �

1

n+m
� an+m � an + am +

1

n+m
follows that for

any n 2 N holds inequalities
an + a1 �

1

n+ 1
� an+1 () a1 �

1

n+ 1
� an+1 � an and

an+1 � an + a1 +
1

n+ 1
() an+1 � an � a1 +

1

n+ 1
which implies

an+m � am =
n+m�1P
k=m

(ak+1 � ak) �
n+m�1P
k=m

�
a1 �

1

k + 1

�
()

(2) na1 + am �
nP
k=1

1

m+ k
� an+m and
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an+m � am �
n+m�1P
k=m

�
a1 +

1

k + 1

�
= na1 +

nP
k=1

1

m+ k
()

(3) an+m � na1 + am +
nP
k=1

1

m+ k
:

From (3) and right inequality of (1) we obtain

an + am �
1

n+m
� an+m � na1 + am +

nP
k=1

1

m+ k
=)

an � na1 �
2

m+ n
+
n�1P
k=1

1

m+ k
and from (2) and left inequality of (1) we obtain

na1 + am �
nP
k=1

1

m+ k
� an+m � an + am +

1

n+m
=)

�
�
n�1P
k=1

1

m+ k
+

2

m+ n

�
� an � na1:

Thus, jan � na1j �
2

m+ n
+
n�1P
k=1

1

m+ k
for any n;m 2 N and since

jan � na1j � lim
n!1

�
2

m+ n
+
n�1P
k=1

1

m+ k

�
= 0

we �nally obtain that an � na1 = 0:

FProblem 10.28 (MRJ259)
Let x1; x2; :::; xn be arbitrary increasing arithmetic progression x1; x2; :::; xn
such that x21 + x

2
2 + :::+ x

2
n = 1:

Since xk = x1 + (k � 1) d; k = 1; 2; :::; n then x21 + x22 + :::+ x2n = 1 ()
x21 + (x1 + d)

2
+ (x1 + 2d)

2
+ :::+ (x1 + (n� 1) d)2 = 1 ()

nx21+2x1d (1 + 2 + 3 + :::+ n� 1)+d2
�
12 + 22 + :::+ (n� 1)2

�
= 1 ()

nx21 + x1d (n� 1)n+ d2
(n� 1)n (2n� 1)

6
= 1 ()

x21 + x1d (n� 1) =
1

n
� d2 (n� 1) (2n� 1)

6
()�

x1 +
d (n� 1)

2

�2
=
1

n
� d2 (n� 1) (2n� 1)

6
+
d2 (n� 1)2

4
=

1

n
� d

2 (n� 1)
12

(4n� 2� 3(n� 1)) ()
�
x1 +

d (n� 1)
2

�2
=

1

n
�
d2
�
n2 � 1

�
12

=) 1

n
�
d2
�
n2 � 1

�
12

� 0 ()

d2 � 12

n (n2 � 1) () d � 2
p
3p

n (n2 � 1)
(since d > 0):

Thus, we obtain upper bound for common di¤erence d:

Let d = d� =
2
p
3p

n (n2 � 1)
then quadratic equation

nx21 + x1d� (n� 1)n+ d2�
(n� 1)n (2n� 1)

6
= 1 ()
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�
x1 +

d� (n� 1)
2

�2
= 0

have only solution x1 = �
d� (n� 1)

2
= �2

p
3

r
n� 1

n (n+ 1)
:

So, arithmetic progression xk = �2
p
3

r
n� 1

n (n+ 1)
+
2
p
3 (k � 1)p
n (n2 � 1)

; k = 1; 2; :::; n

satisfy x21 + x
2
2 + :::+ x

2
n = 1 and maximize common di¤erence d;

i.e. max d =
2
p
3p

n (n2 � 1)
:

Problem 10.29.(Quickies-Q2(CRUX?))
Let bn :=

j�
15 +

p
220
�n
+
�
15 +

p
220
�n+1k

=
j�
16 +

p
220
� �
15 +

p
220
�nk

and

an :=
�
16 +

p
220
� �
15 +

p
220
�n
+
�
16�

p
220
� �
15�

p
220
�n
:

Then a0 = 32; a1 = 920 and an satisfy to the recurrence
(1) an+1 � 30an + 5an�1 = 0; n 2 N .
Since 1 >

�
16�

p
220
� �
15�

p
220
�
�
�
16�

p
220
� �
15�

p
220
�n
> 0

and an is integer for n 2 N and�
16 +

p
220
� �
15 +

p
220
�n
= an � 1 + 1�

�
16�

p
220
� �
15�

p
220
�n

we obtain bn = an � 1:: By substitution an = bn + 1 in the recurrence
(1) we obtain recurrence for bn :
(2) bn+1 � 30bn + 5bn�1 = 24; n 2 N and b1 = 31; b1 = 919:
Let rn � bn (mod 10) then for rn we have recurrence
(3) rn+1 � 5rn�1 = 4 and r0 = 1; r1 = �1.
Since r1 = �1 and r2k+1 = 5r2k�1 + 4; k 2 N we obtain r2k�1 = �1 for
all k 2 N;
Since r2 = 9 and r2k+2 = 5r2k + 4; k 2 N we obtain r2k � 9 (mod 10) for
all k 2 N.
So, bn � rn � 9 (mod 10) for any n 2 N.
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